
UNIVERSITY OF OSLO

Department of Informatics

Efficient

implementation and

processing of a

real-time panorama

video pipeline with

emphasis on dynamic

stitching

Master’s thesis

Espen Oldeide

Helgedagsrud

Efficient implementation and processing of a
real-time panorama video pipeline with

emphasis on dynamic stitching

Espen Oldeide Helgedagsrud

Abstract

The Bagadus system has been introduced as an automated tool for soccer analysis,
and it is built up by an analysis subsystem, tracking subsystem and video subsystem.
Bagadus allows for simplified soccer analysis, with the goal of improving athletes’ per-
formance, by automating the integration of these subsystems. The system is currently
installed at Alfheim stadium in Tromsø, Norway. An important part of the video sub-
system is the creation of panorama videos from four HD cameras. However, the stitch-
ing pipeline for panorama video generation in the first version of the system did not
manage to do this in real-time.

In this thesis, we present how to build an improved panorama stitcher pipeline that
is able to stitch video from four HD cameras into a panorama video in real-time. We
will detail the architecture and modules of this pipeline, and analyze the performance.
In addition we will focus on the stitching component, and how that can improve the
overall visual quality of the output panorama.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Definition . 2
1.3 Limitations . 2
1.4 Research Method . 3
1.5 Main Contributions . 3
1.6 Outline . 3

2 Bagadus 5
2.1 The Basic Idea . 5
2.2 Video Subsystem . 6

2.2.1 Camera Setup . 6
2.2.2 Frame Synchronization . 7

2.3 Analytics and Tracking Subsystems . 7
2.3.1 Muithu . 7
2.3.2 The ZXY System . 8

2.4 The Bagadus Prototype Stitching Pipeline 10
2.4.1 Software Frameworks . 10
2.4.2 Color Formats . 11
2.4.3 Pipeline Architechture . 13
2.4.4 Performance . 15

2.5 The Bagadus Player . 16
2.5.1 GUI . 16
2.5.2 ZXY Integration . 19

2.6 Summary . 19

3 The Improved Pipeline 21
3.1 Motivation . 21
3.2 Related Work . 21
3.3 Architecture . 22

3.3.1 Nvidia CUDA . 23
3.3.2 Improved Setup . 23
3.3.3 Initialization . 24
3.3.4 Controller . 24

3.4 Module Design . 25
3.4.1 Buffers . 25

i

ii

3.5 Frame Delay Buffer . 27
3.6 Frame Drops . 27

3.6.1 Camera Frame Drops . 27
3.6.2 Pipeline Frame Drops . 27

3.7 Pipeline Modules . 28
3.7.1 CamReader . 28
3.7.2 Converter . 29
3.7.3 Debarreler . 30
3.7.4 SingleCamWriter . 31
3.7.5 Uploader . 32
3.7.6 BackgroundSubtractor . 33
3.7.7 Warper . 35
3.7.8 ColorCorrector . 37
3.7.9 Stitcher . 39
3.7.10 YUVConverter . 40
3.7.11 Downloader . 41
3.7.12 PanoramaWriter . 42

3.8 Storage . 42
3.8.1 Raw YUV . 42
3.8.2 XNJ . 43
3.8.3 H.264 . 43

3.9 Pipeline Performance . 44
3.9.1 Write Difference Times . 45
3.9.2 Comparison with Old Pipeline . 46
3.9.3 End-to-end Delay . 46
3.9.4 GPU Comparison . 47
3.9.5 CPU Core Count Scalability . 47
3.9.6 Frame Drop Handling Performance 51
3.9.7 CPU Core Speed Comparison . 52

3.10 Web Interface . 53
3.11 Future Work . 54
3.12 Summary . 55

4 Stitcher 57
4.1 Improving the Initial Stitching Code . 57

4.1.1 Vanilla Implementation . 57
4.1.2 Optimizing Border and Cropping 58
4.1.3 Optimizing Matrix Operations . 58
4.1.4 GPU Hybrid Using OpenCV . 59
4.1.5 GPU Version Using NPP/CUDA 60

4.2 Dynamic Stitcher . 61
4.2.1 Motivation . 61
4.2.2 Related work . 61
4.2.3 Implementation . 62
4.2.4 Performance . 66
4.2.5 Results . 66

iii

4.2.6 Future Work . 67
4.3 Summary . 68

5 Conclusion 71
5.1 Summary . 71
5.2 Main Contributions . 71
5.3 Future Work . 72

A Hardware 73
A.1 Computer specifications . 73

A.1.1 Fillmore . 73
A.1.2 Devboxes . 73

A.2 GPU Specifications . 74
A.3 Cameras . 75

A.3.1 Basler Ace . 75

B Extra Tables 77

C Accessing the Source Code 81

iv

List of Figures

2.1 Bagadus setup at Alfheim . 6
2.2 Camera setup . 7
2.3 ZXY equipment . 8
2.4 Stadard football field measurments . 9
2.5 The Bagadus prototype pipeline architecture 10
2.6 YUV color model examples . 12
2.7 Packed and planar example . 13
2.8 Rectilinear and barrel distortion example 14
2.9 Four warped images and overlay example 15
2.10 Stitched panorama output. 15
2.11 Bagadus player application screenshots 18

3.1 Pipeline architechture . 22
3.2 Illustration of how frames flow through our pipeline. 23
3.3 The CamReader module . 28
3.4 The Converter module . 29
3.5 The Debarrel module . 30
3.6 Debarrel calibration . 31
3.7 The SingleCamWriter module . 31
3.8 The Uploader module . 32
3.9 The Background Subtraction module . 33
3.10 Result of background subtraction . 35
3.11 The Warper module . 35
3.12 Input and output of warp step . 36
3.13 The Color Correction module . 37
3.14 Result of color correction . 38
3.15 The Stitcher module . 39
3.16 Result of stitcher . 40
3.17 The YUV Converter module . 40
3.18 The Downloader module . 41
3.19 The Panorama Writer module . 41
3.20 Pipeline performance . 45
3.21 Pipelien write difference plot . 45
3.22 Old vs. new pipeline . 46
3.23 Pipeline GPU comparison . 47
3.24 CPU core count scalability . 48
3.25 CPU core count scalability for reader and writers 49

v

vi

3.26 HyperThreading scalability . 50
3.27 CPU core count scalability for reader and writers with HyperThreading 50
3.28 Frame drop handling performance . 51
3.29 Frame drop handling, write difference times 52
3.30 CPU frequency comparison . 53
3.31 CPU frequency comparison, write difference times 53
3.32 The new pipeline’s web interface . 54

4.1 Optimized crop . 58
4.2 Data copy operation in the improved fixed cut stitcher 59
4.3 Examples of players getting distorted in static seam. 61
4.4 Finding the overlap and seam search area. 63
4.5 Example of nodes in graph . 64
4.6 Example of the ZXY weighted pixels in a frame 64
4.7 Dynamic stitcher output . 67
4.8 Stitcher comparison . 67

List of Tables

2.1 Old pipeline performance . 16

3.1 Pipeline module buffers . 26
3.2 H.264 performance . 44
3.3 Lincoln specifications. 48
3.4 CPU core count scalability . 48
3.5 HyperThreading scalability . 51
3.6 CPU core count scalability with frame drop handling 52

4.1 Stiching data for 4 frames . 59
4.2 Stiching and warping times for 4 frames using NPP 60
4.3 Dijkstra implementations . 65
4.4 Dynamic stitching . 66

A.1 Fillmore specifications . 73
A.2 DevBox 1 specifications . 73
A.3 DevBox 2 specifications . 74
A.4 DevBox 3 specifications . 74
A.5 GPU specifications, part 1 . 74
A.6 GPU specifications, part 2 . 74
A.7 Specifications for Basler Ace A1300 - 30gc 75
A.8 Specifications for Basler Ace A2000 - 50gc 75

B.1 Overall pipeline performance . 77
B.2 Old vs new pipeline. 78
B.3 GPU comparison . 78
B.4 CPU core count scalability . 78
B.5 HyperThreading scalability . 79
B.6 CPU core count scalability with frame drop handling 79
B.7 Compiler optimization comparison . 80

vii

viii

Acknowledgements

I would like to thank my supervisors Pål Halvorsen, Håkon Kvale Stensland, Vam-
sidhar Reddy Gaddam and Carsten Griwodz, who have been a great help, providing
feedback, discussions, guidance and advice for the development of the Bagadus sys-
tem and this thesis. In addition, Kai-Even Nilsen for all help with installation and
support at Alfheim.

I would also like to thank and acknowledge the work done by Marius Tennøe, Mikkel
Næss, Henrik Kjus Alstad and Simen Sægrov, who all helped create and improve the
Bagadus system. They have all been invaluable sources for discussions, feedback, ad-
vice and help during this project.

Finally, I wish to thank my family and friends for all their support.

Oslo, April 2013
Espen Oldeide Helgedagsrud

Chapter 1

Introduction

1.1 Background

Today, a great number of sports clubs invest time and resources into analyzing their
game performance. By allowing trainers and coaches access to vital game informa-
tion, either manually or through automated systems, the performance of the players
and the team can potentially be greatly improved. In soccer, these analysis tools have
always played an important role, and examples of pre-existing ones are Interplay [1],
Prozone [2], STATS SportVU Tracking Technology [3] and Camargus [4].

These systems all provide a wide range of different game and player data (e.g.,
player speed, heart rate, fatigue, fitness graphs, etc.), but some also contain video and
annotation subsystems. For instance, the system from Interplay supports game annota-
tions through a trained operator, allowing interesting and useful situations in the game
to be correctly marked and played back. The SportVU system on the other hand oper-
ates directly on video, and allows tracking of players using only camera feeds. While
using only video to track players works, it is very demanding and often has less than
ideal accuracy. For better tracking of players, a system like ZXY Sports Tracking [5]
can be used. This system uses radio transmitters on each player to detect absolute po-
sitions on the field, but also additional give additional data such as speed and heart
rate.

A common use of these analysis systems is the ability to play back video of impor-
tant events in the game. These can then be used by the coach to give visual feedback
about these situations directly to the team. There exist several systems for such solu-
tions, like having a dedicated camera man to catch these events occurring, which can
prove expensive both in equipment cost and man-hours. More common perhaps is
the use of several cameras to record the entire field at the same time, thus capturing
all important events regardless. A solution like this would also allow for creation of
a stitched panorama image of the entire field, which can give a very good overview
of everything going on. Camargus is an example of such a system which utilizes 16
cameras to provide a full panorama view of the entire field. Camargus does, however,
not currently support any form of annotation system.

All these systems cover different subsystems, so for proper analysis several of these
elements should be integrated together, which currently requires a lot of manual steps.
To address this, we introduced Bagadus [6]. Bagadus is a fully automated system that

1

2

provides a camera array for video capture, a sensor system for player positions and
statistics, and support for event annotations. These events can both be generated from
an expert operator, or automatically based on data from the sensors, and coupled with
the video system it allows for instant playback when needed. The positional data from
our sensors also allow us to pinpoint player location both on the field and also in our
video streams, thus enabling video tracking of individual (or a group of) players. For
playback, Bagadus supports both single camera footage, but also a stitched panorama
of the entire camera array. The generation of this panorama was initially designed to
be performed in real-time, but the current implementation is far from optimal and per-
formes nothing close to this constraint. The resulting panorama in this implementation
is also of rather poor quality, with several introduced visual artifacts.

1.2 Problem Definition

The main goal in this work is to improve the performance and output of the Bagadus
panorama stitching pipeline. Prior work on such stitching already exist, as seen in
[7–11] and also in Camargus [4]. However all of these have various issues (such as
expensive equipment, low visual quality and performance), making them non-ideal
for our project, .

In this thesis we will look at how we can improve the old Bagadus panorama
stitcher pipeline, both with regards to performance and visual quality. We will look
in great detail at all the modules that make up the system, but our emphasis will lie on
the stitcher component. The improved pipeline we describe in this thesis is currently
installed and in use at Alfheim Stadium, Tromsø, Norway.

To improve the performance, we investigate how the existing system can be split
in to several individual modules, and then sequentially assembled into a pipeline. As
part of the modules, we will also look into how we can use heterogeneous processing
architectures to speed up parallelizable tasks and achieve even better performance.
The overall goal is to create a full panorama stitching pipeline that can do on-line pro-
cessing of four camera streams in real-time. Along the way, we will investigate the
architectural changes needed to support this ambition, and also the modules and algo-
rithms required for it to work.

As for improving the visual quality, we will introduce several specific modules with
this very goal in mind. Our main emphasis, however, is on the stitcher module, and
how that can be improved to offer a much higher quality panorama output for our sce-
nario. We will detail the stitcher from the very first static version and then investigate
how it can be gradually improved to a much more powerful dynamic version.

1.3 Limitations

In the first implementation of our stitcher [6], the selection of algorithms for the panorama
stitching process is discussed in great detail. We therefore use these and do not spend
time going further into how these works as it is beyond the scope of this thesis. We do,
however, research how many of them can be improved, both in regards to speed and
visual quality.

3

1.4 Research Method

In this thesis, we evaluate the design and implementation of the improved Bagadus
system prototype. The system is currently deployed in a real life scenario at Alfheim
stadium in Tromsø. As research method, we use an equal to the Design paradigm, as
described by the ACM Task Force on the Core of Computer Science [12].

1.5 Main Contributions

The main contribution of this thesis has been the creation and installation of an im-
proved panorama stitcher pipeline as part of the Bagadus system at Alfheim. The new
system stores both stitched and non-stitched footage, and performs fast enough to ful-
fill the real-time requirement imposed on the system. This is all achieved on a single
high-end computer with commodity hardware. We have also improved the visual fi-
delity of the final output panorama, both by adding extra pipeline modules for this
purpose and by improving pre-existing ones. Introducing a new dynamic stitcher, we
have also improved the quality of the seam used to make the final panorama. By imple-
menting this pipeline, we have shown that it is possible to make a real-time system for
generating video panorama using a large amount of data by using external processing
units such as GPUs.

We have also been able to submit and publish a poster at the GPU Technology
Conference 2013, in which our system was presented and described [13]. In addition
we have also submitted a paper to ACM Multimedia 2013 [14] detailing our pipeline.

1.6 Outline

In chapter 2, we start by describing the existing Bagadus system. Since our improve-
ments are all made from this old setup, it is important to have a proper understanding
of how it originally was designed and implemented. Following this, we move on to
our actual improvements, by detailing our improved pipeline step-by-step in chapter 3.
This will go deeper into each module, and detail exactly how they work. In chapter 4,
we describe our emphasized module, namely the stitcher. Here, we take a look at its
inner workings, and how it evolved from the initial version to what it is today. In the
final chapter (5), we summarize our findings, and look at some future work.

4

Chapter 2

Bagadus

To make stitched panorama video a prototype pipeline was created. This first imple-
mentation was named Bagadus and it consists of two programs, the main pipeline part
(used for generating our video) and a player (used to play back the recorded video). In
this chapter we will investigate the specifics of this prototype, how everything is set up
and how the components work together. Finally, we will look at the actual programs
themselves, the pipeline and the player.

2.1 The Basic Idea

As discussed in chapter 1 and explained in [6, 15, 16], existing soccer analysis systems,
like Camargus and SportVU, contain several subsystems, such as video recording and
annotation. A problem with these systems is that they require manual steps to inte-
grate into a larger system. These manual steps can be error prone and can introduce
performance overhead, making the system much slower than a fully automated one.

The basic idea of Bagadus is therefore to integrate all components and subsystems
needed for a soccer analysis system into a fully automated system. To be able to do
so, Bagadus contains three main subsystems: The video subsystem, which records and
stores footage of the game, the analytical subsystem, which allows for tagging and stor-
ing events, and the tracking subsystem, which tracks players, player data and statistics.
A diagram of the general Bagadus architecture can be seen in figure 2.1. Here we see
the video subsystem consisting of several cameras covering the whole field, and also
the storage pipelines for both panorama and single camera footage. The tracking sys-
tem is shown as several antennas surrounding the field, which collects player data and
position from the sensors the players are wearing. The analytical subsystem is shown
as a coach annotating events using a smart phone during a game session.

5

6

Figure 2.1: Bagadus setup at Alfheim

2.2 Video Subsystem

Video capture is one of the most important parts of Bagadus, as it provides the data we
need in all following steps. In this section we will look closer at how our cameras are
set up and how the captured frames are synchronized.

2.2.1 Camera Setup

The camera setup at Alfheim stadium consists of four Basler Ace A1300 - 30gc cameras
(appendix A.3.1) set up to cover the whole soccer field. The cameras are mounted
inline, two on each side of the stadium’s center television gantry (used by broadcasters
during matches). To make the cameras combined field of view cover the whole field;
we use 3.5mm wide angle lenses. This gives us the coverage we need, but introduces
an optical phenomenon called barrel distortion that must be corrected for (covered in
section 2.4.3).

7

Figure 2.2: Camera setup

2.2.2 Frame Synchronization

Since we are stitching together frames it is essential that all four frames received from
the cameras are taken at the exact same time. To synchronize the cameras we use an
external device called a triggerbox. The triggerbox is custom built at Simula for this
project and contains circuitry to send a shutter pulse to the cameras at a selectable
rate. In our case the triggerbox is set for 30 Hz, giving us 30 frames a second from the
cameras. Each triggerbox has output ports to support up to 4 cameras, but these boxes
can be daisy-chained to allow for even more outputs.

This first prototype pipeline used two dedicated recording machines, both running
two cameras, to capture our video. To be able to match up the exact timestamps of
the frames between the two machines, a custom made TimeCodeServer was set up to
synchronize the internal clocks of both machines.

2.3 Analytics and Tracking Subsystems

To make Bagadus a useful tool for coaches, both an analytics and a tracking subsystem
is supported. The analytics is in form of an annotations system support integrated in
our Bagadus player, and the tracking is positional data delivered from a radio tracking
solution. We will describe these systems, namely Muithu and ZXY, in this section.

2.3.1 Muithu

Muithu [17] is a coach annotation system currently in use at Alfheim stadium. Muithu
allows coaches to interactively annotate a game in progress using a smartphone appli-
cation and automatically synchronize these events with the corresponding video. The
current Muithu setup is currently off-line, so annotations and video are captured sep-
arately and then recombined during pauses in the game (half-time or end of match).

Since Muithu already is supported and in use on Alfheim, it was always a goal to
get support for it in Bagadus. The player for playing back data from the prototype
pipeline has some basic support for Muithu events, albeit more as a proof of concept
than a real usable implementation.

8

2.3.2 The ZXY System

To be able to monitor individual players on the field, a tracking solution by ZXY Sport
Tracking AS (ZXY) [5] is installed on Alfheim stadium. The solution is based on wire-
less sensor belts (figure 2.3(a)) that each player wear around his waist and that sends
out data on the 2.45GHz band. Around the stadium, there are several big antennas
(figure 2.3(b)) used to pick up these signals, and use them to triangulate the exact po-
sition of the player. The belts can also transmit other information, like the players step
frequency, heart rate and speed.

(a) Sensor belt used in the ZXY-system

(b) One of the ZXY-antennas at Alfheim stadium

Figure 2.3: ZXY equipment

The ZXY Sensor Data

Positional data from the ZXY system at Alfheim gets sampled at a rate of 20Hz and
then stored in an onsite SQL-database. The position is based on ZXY’s own coordinate
system, and is stored as a 2d-point (x,y). According to ZXY [5] the system itself now
delivers up to centimeter accuracy, but the older system installed at Alfheim only has
an accuracy of ±1 meter.

9

Each belt has their own unique id, and this id gets mapped to a player name
through the database. There is no automation for this, so this must be done manu-
ally before each game in order to connect player names with positions. Events such as
the kickoff and half-time are also manually inserted into the data, to enable synchro-
nization between video and the positional data.

Mapping ZXY Sensor Data to Pixels

As mentioned the data received is a 2d-point in a coordinate system. The coordinates
are based on real-life field measurements of a horizontal soccer field where (0,0) is
upper left corner, and bottom right is the size of the field (width, height). Alfheim
measures 105 × 68 meters, so the effective data range is (0,0) to (105,68). Since the
measurements of a soccer field are standardized and well known (Figure 2.4), we are
able to map players to an exact 2d field position using the ZXY data.

Figure 2.4: Stadard football field measurments

Since our cameras are not placed directly over the field pointing down we can not
use these coordinates directly to get player positions in our camera frames. Warping
the data in a way to make that kind of mapping possible is, however, doable and we
will look at how that is done later.

10

Possibilities Using ZXY

While the ZXY-system was originally intended as an analytics tool for coaches, there
are many other useful applications of such a setup. For instance, by knowing the po-
sitions of players on the field and how to translate it to the video stream one can track
individual players across several cameras, and also provide area crops or digital zoom
on one or more players. In Bagadus ZXY is primarily used in the player (section 2.5),
but we will later look at how we integrate it for more uses as part of our improved
pipeline setup.

2.4 The Bagadus Prototype Stitching Pipeline

The prototype panorama stitcher was created to generate a full panorama video stream
from our four camera setup. It is made up of several modules connected together to
form a pipeline, where each module passes its processed frame to the next and so on.
Having such a modular setup means that improvements and modules easily can be
inserted or swapped out should the need arise. In this section, we will discuss how
this pipeline works, from the software it uses to the modules themselves.

Figure 2.5: The Bagadus prototype pipeline architecture

2.4.1 Software Frameworks

To be able to work on the captured camera data, we first need to interface the cameras,
get the data and then do some pre-processing for the image to look right. To do this,
we use two different software libraries suited for the job.

Northlight

Northlight (libNorthlight) is a framework for capturing and streaming video devel-
oped internally here at Simula. Northlight’s most important job in our pipeline is to
interface the Basler capture API, and provide the frame data we need directly from
the cameras. Northlight also handles conversion between some frame formats (like
YUV and RGB), and encoding our frame data to video. It should be noted that North-
light itself does not handle all these operations itself, but instead wraps common tools
and libraries (like swscale [18] for conversion and x264 [19] for encoding) that does the

11

actual work. In such a way, Northlight can be seen more of as a high level helper
framework than a common C++ library.

Northlight contains special data types which we use throughout the whole bagadus
pipeline for working on single video frames. Northlight also provides built in func-
tions for converting between these structures and the more general cv::mat format used
by OpenCV.

OpenCV

OpenCV (Open Source Computer Vision Library) [20] is an open source general com-
puter vision library for C++. OpenCV contains a lot of general purpose functions and
algorithms useful for image manipulation and computation. In the Bagadus pipeline
OpenCV is used to remove the effects of barrel distortion from our input frames (a
process called debarreling), which occurs due to our cameras wide angle lenses (more
detailed at 2.4.3). OpenCV is also used to calculate and warp the frames correctly for
our output panorama (see 2.4.3).

OpenCV has a primitive image data type called cv::mat that we use for all OpenCV
operations. This format also allow us to dump frames directly to disk as jpeg, which
helps immensely for debugging and visual inspection along the pipeline. Since lib-
Northlight can convert its internal data types directly to cv::mat and we basically use
either of these formats along the entire Bagadus pipeline, we are able to save frames
from any part of it to disk as needed.

2.4.2 Color Formats

Two different color formats are in use in all our systems, and should therefore be ex-
plained properly. The cameras themselves can deliver a multitude of different formats
through their API, but in our case YUV is used. Internally however most of our func-
tionality is made to work on the RGB color format, so conversion is required (detailed
in section 3.7.2). We will only touch briefly upon the two formats here, for a much
more in-depth look at them see [6].

RGB and RGBA

RGB is a commonly used color format and represents a color as an additive blend of
the three different primary colors (Red, Green and Blue, hence the name). RGBA is
RGB with an additional alpha channel for setting pixel translucency. RGB supports
several color depths, but the most common variant (called "True Color") is using 8 bits
per channel resulting a total of 24 bits per pixel for RGB and 32 for RGBA. Since we use
32-bit "True Color" RGBA for all RGB operations in our pipeline any future reference
to "RGBA" will now mean this format.

YUV

YUV [21] represents the color as three components, luma (brightness, known as Y’) and
chroma (color, U and V). This stems from the days of analogue TV signal transmission,
where engineers needed a way to add color to an already existing black and white

12

signal. By adding the two chroma channels to the existing b/w signal you get a full
color signal. An example of the three different channels and how they look combined
is shown in figure 2.6(a).

(a) Left side: Original image (top), Luma (Y’)
component (bottom), Right: U (top) and V (bot-
tom) chrominance components

(b) Different subsampling in YUV

Figure 2.6: YUV color model examples [6].

Since humans are more sensitive to black and white information contra color [22],
YUV allows for something called subsampling reducing the size needed for a full im-
age. Using subsampling the color channels are only sampled in a given ratio to the
luma channel (see figure 2.6(b)), thus reducing the color accuracy of the output, but
also lowering the size needed.

Packed and Planar

Both RGB and YUV have two different ways to store individual pixel data, namely
packed and planar. Packed saves all components of the given pixel sequentially at the
pixel’s offset in memory. Planar first saves the entire first component for all pixels,
then the entire second component for all pixels, etc. Figure 2.7 has examples of how
the pixel data in a YUV4:2:0-image is stored in both packed and planar formats. Here,
we can see that in cases where the channels are not of equal size (like with the chroma
subsampling of YUV4:2:0) the planar format requires less space, as the non-sampled
values are not stored. In the packed format all the values; will always be stored to
according to format, and non-sampled values will simply be set to 0.

13

(a) Packed pixel data (b) Planar pixel data

Figure 2.7: Packed and planar example showing storage of a YUV file with 4:2:0 sub-
sampling

2.4.3 Pipeline Architechture

The pipeline is made up of several sequential modules each one performing a differ-
ent task. By keeping each step as modular as possible, adding or removing additional
steps of functionality becomes very straightforward and simple to implement. Fig-
ure 2.5 shows the full prototype pipeline with all its modular steps. We now investigate
each of the steps a bit closer, before we dive into the specific implementation details in
chapter 3.

Reader and Converter Step

The first step of the pipeline is to get the frame data. In this first prototype, we used
pre-recorded footage in the YUV-format dumped directly to hard disk. The reader’s
job is therefore simply to read these files and pass along the frame data to the next
step in the pipeline. After the frame is read into memory, we do a conversion step to
convert the YUV data to the RGB color space we use for the rest of the pipeline.

Debarrel Step

As mentioned earlier, we use 3.5mm wide angle lenses on our cameras, which in-
troduce an optical effect called barrel distortion (figure 2.8). Barrel distortion bends
straight lines radially outwards from the center in a shape resembling a barrel, thus
the name. To be able to do further work on the frame data, this unwanted effect needs
to be corrected for, and that is what the debarrel step does. Debarreling counters the
barrel distortion by trying to rearrange the pixels to be as rectilinear as possible. For
this to work the debarreler must be configured correctly for the lens of the camera in
use, and we investigate this closer in section 3.7.3.

14

Figure 2.8: Difference between an image that is rectilinear and one that has barrel dis-
tortion

Warping Step

Since all our cameras are positioned at different points, each facing the field at a sepa-
rate angle, we need to do another processing step before we can stitch the frame data
together. The individual frames must be manipulated in such a way that they all share
the same perspective as one of the other cameras (called head). This operation is called
image warping, and is done by moving each pixel in the frame using a pre calculated
transformation matrix (detailed in section 3.7.7).

Stitching Step

After the warping step is complete, we can create the full panorama output image by
copying the four camera frames into a single output frame. This step is called stitch-
ing and is done by first finding the overlapping sections between the camera frames
(figure 2.9), then choosing the cut offsets within each of these regions. In this proto-
type pipeline the cuts are strictly vertical and static, and never changes throughout the
execution. When the offsets are found we simply block copy the visible parts of the
respective frames into the new panorama frame. Figure 2.10 shows how the final out-
put looks. Since the emphasis of this thesis is the dynamic stitching, we will look a lot
closer at the specifics of the stitching in both section 3.7.9 and the whole of chapter 4.

Second Conversion Step

Our data up till now have been in RGB, but the encoder in the following step needs
data in YUV4:2:0 to work correctly. This step is therefore just a conversion of the whole
RGB panorama frame to a YUV version.

Storage Step

The final step in the pipeline is storing the stitched panorama frames to disk. The
choice of what format we use for the storage is an important one for many factors

15

Figure 2.9: Our four warped images at the top, shown overlayed at the bottom.

Figure 2.10: Stitched panorama output.

(including quality, performance and size) and is discussed in [6], we also look at some
alternatives in section 3.8. In this prototype pipeline, we encode the frames as lossless
H.264 in 90-frame chunks (3 seconds) and write them directly to disk.

Since H.264 has no support for metadata, the initial recording timestamp is ap-
pended to filename of the first file written. By knowing both the initial time and frame
number we can calculate the exact timestamp of each frame easily. This is needed for
synchronization with time based systems (such as ZXY), but is also useful for finding
the seek offsets of exact times in the video.

2.4.4 Performance

The performance of this first prototype pipeline stitcher can be found in table 2.1. From
reading the numbers, it is immediately clear that this is not running real-time and
that the performance in general is pretty slow. Especially the stitching has bad per-

16

formance, using as much as 88% of the total time. The reason for this is simply that
this first prototype version was made without performance in mind, so no sort of op-
timization was attempted. In the later improved version of the pipeline (chapter 3),
we introduce real-time as a fixed constraint, and achieve very different performance
numbers.

Step Mean time (ms)
YUV ⇒ RGB 4.9
Debarreling 17.1
Primary stitching 974.4
RGB ⇒ YUV 28.0
Storage 84.3
Total 1109.0

Table 2.1: Old pipeline performance

2.5 The Bagadus Player

The Bagadus player is the playback part of the Bagadus pipeline. It is built ground up
just for our needs, and is written in C++ using a combination of OpenFrameworks [23],
OpenCV and libNorthlight. The main purpose of the Bagadus player to be a nice user
interface for displaying the data generated in our pipeline. A video demonstration
of the player can be seen in [24]. We will walk through some of the most important
features of the program:

2.5.1 GUI

The Bagadus player features a user friendly and easy to use interface. It is built using
OpenFrameworks’ ofx_Gui [25] add-on library, which comes with high level function-
ality for creating and managing user interfaces quick and easily.

In the center of player application is the main camera view. This part of the inter-
face is used to display the currently selected camera or the whole panorama frame if
stitched video mode is selected.

On the left side of the Bagadus player there is a list of all players and a smaller
event list directly below it. The player list gets populated by names from the ZXY-
database, which are manually entered before each match. Clicking on one or more
of these entries turns on tracking for all the selected players. All tracked players get
a rectangle overlay on the video showing their exact position in the frame (shown in
figure 2.11(a)). The rectangle will only be drawn for players who are present in the
main camera view, however selecting the panorama mode will show the entire field,
and thus all selected players will always be drawn.

The event list is a proof-of-concept demo using mock Muithu-event-data. Clicking
an entry in this list plays back the current event by forwarding the video to the time of
the occurrence and enabling tracking on all players associated with said event.

Directly over the main camera view there are several controls, including zoom,
camera, tracking and stitched video toggle. Starting with zoom this enables digital

17

zoom on one or more tracked players by simply enlarging the ZXY-rectangle area of
the player or players. The quality on this zoom is somewhat lacking due to the low
resolution of our cameras, but in the future this can be greatly improved by using
higher resolution camera equipment.

To the right of the zoom is the camera control. This allows us to manually select
which one of the four cameras we want to view in the main camera view. If you select
"Track players" instead of a camera the player will continuously change the active view
to whichever camera has most of the players you are currently tracking. The final mode
("Stitched Video") switches the mode to the full panorama video stitched together from
all the cameras (figure 2.11(b)).

18

(a) Tracking a single player

(b) Same player outlined in the stitched panorama view

Figure 2.11: Bagadus player application screenshots

19

2.5.2 ZXY Integration

The player has full ZXY integration in order to track player positions on the video
streams it displays. It manages this by fetching and parsing the ZXY data directly from
our tracking database using SQL. Since this first prototype uses fixed cut stitching, we
know how much each of the cameras cover, and by checking which part of the seam a
player is on we can calculate the exact camera he appears on. Then, by running the 2d
ZXY-coordinates through a ZXY warp lookup function for the camera in question; we
get the exact pixel position of this player.

Using this approach, we can trace a player across the whole field by swapping
the active camera for the main view whenever the player crosses the seam between
two cameras. This functionality can be enabled in the bagadus player by checking the
"track players" checkbox at the top of the user interface (see figure 2.11). If more than
one player is selected, it will automatically select the camera with most of the selected
players present.

2.6 Summary

In this chapter, we have described our first prototype implementation of our panorama
video pipeline, nicknamed "Bagadus". We started by looking at the hardware setup
needed for such a system, then at some of the pre-existing analytical systems already
in use at our location at Alfheim stadium. Then, we walked step-by-step through the
modules of our first pipeline prototype, before we finally took a look at the player
application built to facilitate the system.

As the benchmarks in section 2.4.4 stated, this version of the prototype is severely
lacking in performance, and has much room for improvement. One of our goals is to
be able to deliver processed video to the coaches during half-time, so this prototype
pipeline is not fast enough. The output panorama video from this pipeline also con-
tains visual artifacts, such as color differences between the cameras and players getting
distorted in the static cut of our stitcher. To improve these shortcomings, an improved
version of the pipeline was created, and we will continue in chapter 3 detailing this.

20

Chapter 3

The Improved Pipeline

3.1 Motivation

The first prototype pipeline showed that it is indeed possible to create a panorama
stitching pipeline for a scenario such as the one we have at Alfheim. One of the goals
of this master project, however, is to do so in real-time, which our first prototype did
not. Our work thus started on making a better and improved pipeline with such a goal
in mind, and this is what we’ll look closer at in this chapter.

3.2 Related Work

Real-time panorama image stitching is becoming more popular, and there exist many
proposed systems for it (e.g., [7–11]). We are also seeing support for this feature in
modern smart phone operating systems like Apple iOS and Google Android, which
supports stitching of panorama images in real-time. The definition of real-time, how-
ever, can differ greatly based on context, and these devices usually would classify 1-2
seconds as within their acceptable real-time bounds. In video, real-time has another
meaning, as the panorama must be generated no slower than the video frame rate,
e.g., every 33 ms for 30 frames-per-second (fps) video in our scenario.

Camargus [4] is one of these existing systems, and the developers claim it can do
panorama video from a 16 camera array setup in real-time. Unfortunately Camargus is
a commercial system, so we have no further insights to the details. Another example is
the Immersive Cockpit [26] system, which generate stitched video from captures with
a large field-of-view, but does not focus on visual quality. They are able to generate
25 fps video using 4 cameras, but there are visual limitations to the system making it
unsuited for our scenario.

A setup resembling ours is presented in [27], which does stitching on GPU. The
performance good enough for real-time, but it is limited to two cameras and only pro-
duces low resolution images. On the other side of the spectrum we have Haynes [28]
and the Fascinate [29] project, which both produce high resolution videos, but require
expensive and specialized hardware.

In summary many related panorama systems exist, but none are able to meet our
demand of being a low-cost implementation able to create full panorama video using

21

22

four cameras at 30 fps. Thus, we have implemented our own panorama stitching video
pipeline which utilizes both CPU and GPU to satisfy our demands. The system is
presented and detailed in the following sections.

3.3 Architecture

The architecture of the new pipeline shares the same modular design as the old one,
but with several new additions. Most important is that we now do much of our calcula-
tions on GPU using nVidias CUDA parallel programming framework. The pipeline is
therefore split into a CPU and a GPU part, as shown in the full layout chart (figure 3.1).

Figure 3.1: Pipeline architechture

Furthermore, several new modules were added and also and a new controller mod-
ule to synchronize all our steps. Since we have so many modules now, the controller
is essential for keeping the flow, and moving data between our modules. An example
of how the frames advance through our pipeline is shown in figure 3.2. As we see the
frames goes from module to module, and all the modules are executed in parallel ev-
ery 33 ms. It is the controller’s job to move the data between the modules, and it does
this either by coping the data between the module buffers, or change the write pointers
used in the modules to point to another buffer. In this new pipeline, we also use the
ZXY positional data directly in some of the computations, so a step for fetching those
is also present.

23

Figure 3.2: Illustration of how frames flow through our pipeline.

As we did in chapter 2, we will now step through all the components and modules
of this new pipeline, and look at how they work together. In this section, we will also
look a lot more detailed at the implementation details regarding each component.

3.3.1 Nvidia CUDA

Compute Unified Device Architecture (CUDA) is a parallel computing platform cre-
ated by Nvidia. CUDA allows you to write code that gets executed on the massively
parallel graphical processing units (GPU), allowing for extreme performance boost for
suitable applications. This generally means tasks that can be heavy parallelized, as
they gain most from this kind of architecture. Unfortunately CUDA implementations
are not trivial to do, and certain problems are a lot better suited to be solved on regular
processor than on a GPU.

In our case, CUDA is used for a whole section of the pipeline (as shown in sec-
tion 3.3). As moving data to and from the GPU is a big performance hit, the pipeline is
designed so that once the data is uploaded on our card it stays there as long as possible.
This also means that we might use a GPU-solution on some cases where a CPU version
could be more efficient, as moving the data to the processor and back would introduce
too much overhead. By keeping everything on the GPU for as long as possible we are
able to tap the great potential of CUDA while keeping the overhead of data transfer
to a minimum. CUDA is well documented [30–32], so no further technical coverage
about it will be provided here.

3.3.2 Improved Setup

As mentioned in section 2.2.2, the prototype pipeline was set up with two machines
capturing two cameras each. This lead to some problems with synchronization be-
tween the machines, as the clocks on the two machines would drift slightly. After
looking a bit at the performance number it became clear that it was possible to run all
four cameras from the same machine, thus avoiding the problem with synchronization
all together. This is now implemented in the new CamReader module (section 3.7.1).

In this new setup we have also made the ZXY database server synchronize its time
with the same NTP time server as we use on the pipeline machine. This solves an

24

earlier problem where the clocks on the individual machines would drift slightly over
time, messing up the ZXY-data synchronization with our frames.

3.3.3 Initialization

When the pipeline starts it first parse the input parameters. The current supported ar-
guments are a recording start timestamp and length of the recording. If the set time has
not occurred yet the process will wait until it occurs before it starts up the pipeline. The
reason for this waiting is to be able to schedule multiple pipeline runs without them in-
terfering with each other. Since we only can have one pipeline process initialized at the
time, we have scheduled processes wait before any initialization. When the pipeline is
ready it will initialize CUDA and set the active CUDA device, which will be the GPU
with the highest number of CUDA-cores. It then creates a new PanoramaPipeline ob-
ject, and launches it.

Since there is a variable amount of delay from the start of the pipeline to the record-
ing begins, we actually begin initialization 30 seconds before the specified record start
timestamp. 30 seconds are more than enough, but it’s better to get a few frames extra,
than to miss the kickoff.

3.3.4 Controller

The pipeline now has a central controller to coordinate and synchronize all our mod-
ules. The modules themselves do not communicate between themselves at any point,
so all interaction between them is done through the controller. The controller does this
using signaling, mutexes, barrers, flags, etc.
The pseudocode of the controller looks like this:

1. Create and initialize all modules. The initalization in each module’s constructor
will be run.

2. While the pipeline is running:

(a) Wait until the CamReader has new frames.

(b) Get the frames.

(c) For all modules, move the data from the output buffer of the module into
the input buffer of the next. This is done either by swapping pointers or
using memcpy. Pointer swapping only occurs in steps where the input and
output buffers are of the same type and size.

(d) Check for (and handle) any framedrops.

(e) Broadcast signal to all modules (except the reader) telling them to process
the new data in their input buffers.

(f) Wait for all modules to finish using a barrier.

3. Cleanup and terminate.

25

It should be noted that all this logic leads to a certain amount of time overhead in
the pipeline from the controller. Thus when looking at the module timings the con-
troller overhead must also be added to the total time. The CamReader is the only
module where this can be ignored, as it works largely independent of the controller.

3.4 Module Design

Our modules all follow the same general design. Each module has a module controller
which is responsible for all communication with the pipeline controller thread. The
pseudocode for the module controller looks like this:

1. While the pipeline runs:

(a) Wait for the signal from the main controller.

(b) Increase internal frame counter.

(c) Execute module’s main processing function.

(d) Wait for all module threads to finish (using a barrier).

The execution in step 1c differs a bit based on the type of module. On single
threaded CPU-modules the execution step actually runs the processing code itself. On
multithreaded CPU-modules, however, it will signal its subthreads to do the actual
processing. Lastly for GPU-modules the controller just launches the module’s CUDA
kernels, which does the processing directly on the GPU.

3.4.1 Buffers

All our modules in general have two set of buffers, input and output. Exceptions are
of course the start and ends of the pipeline, as the reader gets data directly from the
cameras and the writers output to disk. A full list over our buffers is found in table 3.1.

The CPU models have their buffers located in ordinary system memory (RAM)
while the GPU modules have them in shared memory on the card itself. The Up-
loader and Downloader modules moves data between CPU and GPU and must there-
fore must have buffers on both sides. The Uploader has an extra set of GPU buffers as
it uses double buffering when transferring data.

This input/output buffer model was designed to make modification and addition
of new modules as easy as possible. As long as the module reads the format of the
previous’ output buffer, and itself outputs in the format of the next module’s input
buffer, adding it to the pipeline is trivial. It is also very straight forward to re-route the
data between different modules, or skip some of them entirely, with just a few code
changes in the pipeline controller.

It should be noted that in our implementation all data movement between modules
that use buffers of the same type and size are done using pointers instead of actually
copying the data. This is done by setting the input buffer pointer of the next module
to the allocated output buffer of the previous one, and then moving the output pointer

26

Module Host (CPU) Device (GPU)

Reader
In: 4 x raw camera stream
Out: 4 x YUV frame -

Converter
In: 4 x YUV frame
Out: 4 x RGBA frame -

Debarreler
In: 4 x RGBA frames
Out: 4 x RGBA frames -

SingleCamWriter In: 4 x RGBA frame -

Uploader In: 4 x RGBA frame
Out: 2 x 4 x RGBA frame
Out: 2 x 4 x bytemap

BGS -

In: 4 x RGBA frame
In: 4 x bytemap
Out: 4 x RGBA frame (unmodified)
Out: 4 x bytemap

Warper -

In: 4 x RGBA frame
In: 4 x bytemap
Out: 4 x warped RGBA frame
Out: 4 x warped bytemap

Stitcher -

In: 4 x warped RGBA frame
In: 4 x warped bytemap
Out: 1 x stitched RGBA frame

YuvConverter -
In: 1 x stitched RGBA frame
Out: 1 x stitched YUV frame

Downloader Out: 1 x stitched YUV frame In: 1 x stitched YUV frame
PanoramaWriter In: 1 x stitched YUV frame -

Table 3.1: Pipeline module buffers

27

of the previous module to the allocated input buffer of the next module. These point-
ers will be swapped every pipeline cycle so that the reading and the writing always
happen on different buffers.

3.5 Frame Delay Buffer

Since there is a small delay from the capture to the ZXY positional data is available
from the database, we need a way to stall the processing of frames until this data is
ready. This delay is approximately 3 seconds, and there is also the query execution time
(around 600-700 ms) that must be factored in. Since the first module that needs ZXY
data (Background Subtraction) much faster than this delay we use a delay buffer to
hold the frames until we can process them. The buffer is located between the Debarrel
and the Uploader module as we wanted it as close to the first module that needs ZXY
while still being on the CPU for easier implementation. The size of the buffer is 150
frames for each camera, 600 frames total. At 30 frames per second, this is a delay of
5 seconds. The size can be manually configured if a longer or shorter delay interval
should be needed.

3.6 Frame Drops

Our improved pipeline also introduces handling of frame drops, both from cameras
themselves but also internally in the pipeline itself. A certain, albeit low, amount of
frame drops will always occur while running the system, but it is essential to keep it
as low as possible so it does not affect our output.

3.6.1 Camera Frame Drops

Camera drops happens when the Basler API code in our CamReader fails to return
a frame. This can happen from time to time due to several factors like unexpected
errors with the cameras, timing errors in the triggerbox or high CPU load. We handle
missing frames from the camera by simply re-using the previous read frame. This is
generally not noticeable as long as the occurrence of camera drops are very rare, which
they usually are under normal runs of the pipeline.

3.6.2 Pipeline Frame Drops

Since our pipeline is on an extremely strict real-time constraint, we must handle frame
runs going over this threshold by dropping the frame in question. Modules taking
too long can happen for a lot of reasons, but most common are overloaded CPU, OS
interrupts or file access and IO taking too long. The CamReader module reads in new
frames by overwriting the old buffers, so if a run takes too long we risk that the frames
from the camera gets overwritten by the next set before they get processed.

We solve this by having a frame counter for each camera in the CamReader, which
gets incremented whenever it reads new frames. The pipeline Controller then checks

28

this counter every time it moves the frame data from the reader. If it’s the expected next
in sequence everything is processed normally. But if there is a gap, we know we have
missed one or more frames and these will be flagged as dropped. The controller does
this by pushing the frame numbers of the missing frames onto the drop counter list in
all modules of the pipeline. On each iteration in the pipeline all the modules checks
whether the received frame is in this list, and if so they do not process it. The writer
modules are a bit different and handle these dropped frames by writing the previous
written frame again. This keeps the frame count consistent and avoids skipping in the
output videos, but can be very noticeable if heavy frame loss should occur.

3.7 Pipeline Modules

We now look at all the modules of the pipeline in detail. We walk through them fol-
lowing the general layout used in our pipeline chart (figure 3.1).

Figure 3.3: The CamReader module

3.7.1 CamReader

The reader is the first module of the pipeline, and it reads frames into the system. The
current pipeline reader reads data directly from our Basler cameras, which are set up
to deliver YUV4:2:2 frames, and sends these along the pipeline. This first reader-step
of our system is designed to be very modular, and in our prototype pipeline and earlier
tests a file reader was used to read pre-stored frames from disk instead of streaming
directly from camera. Other cameras, or video systems, can be easily supported in the
future by simply writing a custom reader for it.

It should be noted that the frame source of the reader (in this case the cameras)
is what dictates the real-time threshold of our entire pipeline. Our cameras delivers
frames at a steady 30 fps (frames per second), which means that each module must be
under 1/30th second (33 ms) to keep everything real-time.

Implementation

The CamReader is a pure CPU-module and runs using 1 thread per camera (for a to-
tal of 4 in our case). Each thread interfaces its associated camera using the Basler API
wrappers in libNorthlight and return frames in the YUV4:2:2 format. The cameras sup-
port a theoretical maximum resolution of 1294 x 964, as seen in A.3.1. But the driver
actually limits this to 1280 x 960 in our scenario, so that is the resolution we are using.

29

The pseudocode for the CamReader looks like this:

1. While the CamReader threads are receiving frames and the pipeline runs:

(a) Try to get next frame using a timeout 34 ms.

(b) On timeout: Clone previous frame, but use current timestamp.

(c) On success: Save the frame with the current timestamp in the module output
buffer.

(d) Wait for the other reader threads to finish before continuing.

Since the camera shutters are synchronized directly by the external trigger box men-
tioned earlier, we are sure that we get four frames taken simultaneously at an exact 30
Hz interval.

Figure 3.4: The Converter module

3.7.2 Converter

Since our pipeline use the RGBA color space for most of its internal operations we must
convert our incoming YUV4:2:2 frames before they can be processed further. While the
pipeline in theory could be YUV all the way through, we went with RGBA internally
due to it being simpler to understand and work with. RGBA was chosen over regu-
lar RGB as some of the modules, especially the background subtractor, works more
efficient using that format (detailed in [33]).

Implementation

The Converter is a single-threaded CPU module that takes four YUV4:2:2 frames from
the previous reader step and converts them into four RGBA frames. The conversion
itself is done using libNorthlight’s VideoConverter class, which again is based on sws-
cale and has conversion support for several formats including YUV4:2:2 and RGBA.
Unfortunately there is no direct converter from 4:2:2 to RGBA, so in order to get the
desired result we have to go from 4:2:2 to 4:2:0 to RGBA. A more direct conversion
would probably be faster, but since this module already has real-time performance, no
extra time was spent on trying to speed it up. This module also runs single threaded
for the very same reason, it is fast enough and adding more complexity would be a

30

waste of time unless absolutely needed.

The pseudocode of the Converter module looks like this:

1. For all cameras:

(a) Convert input frame from YUV4:2:2 to YUV4:2:0.

(b) Convert this YUV4:2:0 frame to RGBA.

Figure 3.5: The Debarrel module

3.7.3 Debarreler

Since our cameras utilize 3.5mm wide-angle lenses to capture video, the captured
frames will always show some sign of barrel-distortion. The Debarreler’s job is to
rectify this as much as possible and make the lines in our frames as straight as pos-
sible. For the Debarreler to work correctly it must first be calibrated properly, so we
discuss that step before we look at the implementation.

Calibration

Before we can run the debarreling step on any frame data, we need to find the debarrel
coefficients needed to normalize the output as much as possible. The amount of barrel
distortion differs in all lenses, so in order to get the best frame data possible all cameras
needs to be calibrated separately. Calibration is done by taking a series of pictures of an
easy to detect chessboard pattern in different positions and angles, and then running
these through OpenCV’s autocalibrator. Given that the chessboard is clearly visible in
all shots, and that the different angles and positions together cover most of the lens’
field of view, very good results can be achieved. As mentioned earlier, the calibrated
debarrel coefficients are unique to optics in the lens used in the calibration process, so
if the lens is changed at any point the whole process needs to be done again. Figure 3.6
shows an example of the calibration. The calibration step is also discussed with greater
detail in [6].

Implementation

The Debarreler is a multithreaded CPU module that takes four RGBA frames in and
returns four debarreled RGBA frames as output. The debarreling itself is done using

31

Figure 3.6: Debarrel calibration in OpenCV. The dots and lines are placed by OpenCV
to show that it recognize the chessboard.

OpenCV, which remaps the pixels of the frame using the debarrel coefficients we found
in the calibration step. Since running four of these operations sequentially used longer
time than our real-time threshold allowed for, it was split up in four separate threads
running in parallel.

The pseudocode for the debarreler:

1. For each debarreler thread (one for each camera):

(a) Run OpenCV’s debarrel-function using the correct debarrel coefficients on
the assigned frame.

Figure 3.7: The SingleCamWriter module

3.7.4 SingleCamWriter

Our pipeline does not only provide a single panorama, but also the four individual
camera streams unstitched. The singlecamwriter is in charge of dumping these indi-
vidual camera streams to disk. This step is done after the debarreler as the files are
more useful without the distortion.

32

Implementation

SingleCamWriter is a multithreaded CPU module that takes in four debarreled RGBA
frames and writes them to disk. For performance we run each camera writer in its
own thread, with all four running in parallel. The frames are encoded as 3 second long
H.264 segments and then written to disk. The H.264 encoding is a bigger topic in it-
self, and we will look a bit closer at it in section 3.8.3. The files are stored in a folder
structure where each camera has its own folder, and the file names consist of the file
number and a timestamp.

Pseudocode for the module looks like this:

1. For each SingleCamWriter thread (one for each camera):

(a) Convert input frame from RGBA to YUV4:2:0.

(b) If current open file has 3 seconds of data: Close it and open a new one with
updated timestamp and file number.

(c) Encode the converted input frame to H.264.

(d) Write the H.264 frame to our current open file.

The conversion is done using libNorthlight (as detailed in section 3.7.2). We do
conversion, encoding and writing to disk in this single module simply because works
under the real-time constraint. The encoder is the most demanding operation in the
module, so if given a bigger load to encode (i.e., frames of bigger dimensions), splitting
all the operations to separate modules would most likely be required.

Figure 3.8: The Uploader module

3.7.5 Uploader

We now move most of our processing over to the GPU, and the Uploader is the module
in charge of moving all relevant data over to our graphics card. The Uploader also does

33

some CPU-processing for the BackgroundSubtractor GPU module that gets uploaded
to the GPU among the other data.

Implementation

The Uploader is a single threaded module that runs on both CPU and GPU. It takes
four RGBA frames as input and returns 4 RGBA and 4 byte maps on the GPU (de-
scribed in section 3.7.6) as output. The data is uploaded to pinned GPU-memory using
the asynchronous cudaMemcpyAsync() using double buffering (further detailed in [33]).

The Uploader also does some CPU-work for the later BackgroundSubtractor mod-
ule (we look closer at what in the related module section). The byte maps from this
work are uploaded exactly the same way as the RGBA frames.

The pseudocode for the module looks like this:

1. If the BackgroundSubtractor module exists: calculate player pixel byte maps

2. For each camera:

(a) Asynchronous transfer the input framedata from CPU to GPU-memory

(b) If the BackgroundSubtraction module maps were calculated: Transfer them
asynchronously to GPU-memory.

Figure 3.9: The Background Subtraction module

3.7.6 BackgroundSubtractor

The BackgroundSubtractor (BGS) is a brand new module in this new pipeline. It is used
to analyze a video stream and finding out which pixels are foreground and which are
background. It does this based on special algorithms developed for this purpose and
we can use the result to improve later modules in the pipeline (e.g. the accuracy of the
stitcher module). The BackgroundSubtractor uses ZXY data to improve its accuracy,

34

which explains why it needs both a CPU and GPU part. Background subtraction is a
large topic, so for further details about how it is used in our project please consult [33].

Implementation

There are two parts of the BackgroundSubtractor module, one on CPU and one on
GPU. The CPU part is responsible for calculating the player pixel lookup maps based
on ZXY data. These maps are simple bitmaps (of the same size as our frames) specify-
ing whether or not players are present on each pixel. For getting the ZXY data we have
a dedicated thread that checks the database for ZXY samples when needed. Note that
the CPU part of the BackgroundSubtractor is executed through the Uploader module
for convenience; it could very well be split into its own custom module if needed.

The GPU part of the BGS runs the actual background subtraction on the frames.
It takes four RGBA frames and corresponding player pixel lookup maps and returns
the four unmodified RGBA frames and corresponding foreground masks as output.
The foreground masks are pixel maps with separate values for foreground, foreground
shadows and background, and this is what is used in later modules. Note that the ZXY-
based pixel lookup maps provided from the CPU module only is a kind of optimization
of the actual subtraction allowing it to only run on areas of the frame where there are
players present. It is not necessary for operation, so we have a fallback mode in the
pipeline for instances where ZXY is not available.

The pseudocode for the BGS ZXY retrieval thread (CPU-side) looks like this:

1. While the pipeline is running:

(a) If the cached ZXY data table in memory is below a certain threshold, get
more and update the table.

The creation of the pixel lookup map (CPU-side) looks like this:

1. Create new bytemap with the dimensions of our frames (1280 x 960).

2. Get the cached ZXY-data for the sample that matches the current frames’ times-
tamp.

3. For all players:

(a) Translate ZXY coordinate into pixel data.

(b) Set the translated pixel positions in the pixel lookup map to 1.

4. Return the byte map.

The execution of the BGS on the GPU-side looks like this:

1. For all cameras:

(a) For every pixel: calculate the pixel status to either background, foreground
or shadow.

35

Result

The result of the BackgroundSubtractor module is a foreground mask that can be seen
in figure 3.10. We use these masks later in our pipeline to determine which pixels in
our frames contain players and which do not.

(a) BGS input frame (b) Resulting foreground mask

Figure 3.10: Result of background subtraction

Figure 3.11: The Warper module

3.7.7 Warper

The warper module is used to prepare the debarreled frames for the next step in the
pipeline, the stitcher. Since our cameras are covering different areas of the field with
varying angles, getting our source frames as aligned as possible is essential for the
stitch to be good. The warper works by using one of our four frames as a base refer-
ence and then "warping" all the others to fit the original perspective as much as pos-
sible. Ideally, if you were to overlay the warped images over the base it should look
like one continuous image. The warper works by simply applying a pre-calculated
transformation matrix to each pixel in the frame.

Since we have corresponding background masks from the BGS for each frame we
also warp these to match our warped frames. This is required since we want to be able
to use the background data later in our pipeline, and the foreground masks should
always match the frame data.

36

Implementation

The warper is pure GPU module. It takes 4 RGBA frames and 4 foreground masks as
input, and returns 4 warped RGBA frames and 4 warped foreground masks as output.
Our implementation of the warper is based on the call nppiWarpPerspective_8u_C4R
from NVIDIA’s NPP library [34]. This is the GPU equivalent to the OpenCV call
cvWarpPerspective that we used on our first CPU prototype. The warp call needs a
warp matrix for each of the cameras to be able to warp the perspective correctly and
these are found using several OpenCV techniques (detailed in [6]). We must also set
the interpolation method used in the warping, and for performance reasons we are us-
ing nearest neighbor, which runs very fast and looks good enough for our use.

The pseudocode of the Warper looks like this:

1. For all cameras:

(a) Warp the input frame using nppiWarpPerspective_8u_C4R().

(b) Warp the foreground mask using the same NPP-call.

Result

The result of the Warper can be seen in figure 3.12. This shows a real frame of our
pipeline before and after the warper has processed it.

(a) Image BEFORE warping

(b) Image AFTER warping

Figure 3.12: Input and output of warp step

37

Figure 3.13: The Color Correction module

3.7.8 ColorCorrector

Since we have four different cameras, all with different perspectives and thus slightly
different lightning conditions, we need a module to even out the differences as much
as possible before stitching. The big color differences between the stitched frames was
one the reasons why our fixed stitch in the prototype pipeline was so visible, so nor-
malizing the differences in the stitch area is an important step for a good seam. Color
correction is a large topic, so for further details about how it works and is used in our
project please consult [35].

Implementation

The ColorCorrector (CC) is a GPU-module that takes 4 warped RGBA frames and 4
warped foreground masks as input, and returns 4 color corrected RGBA frames and
the unmodified foreground masks. The foreground masks are simply passed through,
as the CC has no use for them. The color correction itself works by first finding the
overlapping areas of the frames and then using the colors in those overlapping regions
to generate correction cooeffecients that are then applied to all pixels of the frame.

The pseudocode of the ColorCorrector looks like this:

1. One camera is used as base and therefore has its correction coefficients set to 1.

2. For the remaining cameras:

(a) Calculate the current camera’s correction coefficients based on the color dif-
ferences in the overlapping area between the base camera and the current
camera.

3. Calculate a global correction coefficent based on all the cameras to normalize the
output.

4. Calculate the final coefficients by multiplying the individual coefficients with the
global one.

5. Run the actual color correction on all frames, using the final coefficents.

38

Results

Figure 3.14 shows an example of the ColorCorrector module. Here we can observer
that the image without color correction has much more visible seams than the corrected
one.

(a) Stiched image without color correction

(b) Stiched image with color correction

Figure 3.14: Result of color correction. Image is cropped for illustration purposes, and
use the original fixed cut stitcher.

39

Figure 3.15: The Stitcher module

3.7.9 Stitcher

The stitcher module takes the processed frames from the warper and merges them
together to the final panorama image. The stitcher assumes that all received input
frames are properly aligned, and so its only job is to select which pixels from which
frame goes into the panorama output. In this section we look at the original fixed
cut pipeline stitcher, although a much better dynamic stitcher is already implemented.
This new stitcher and how it works will be covered much more in-depth in chapter 4.

Implementation

The prototype pipeline version of the stitcher is a very simple and straight forward
GPU module. It takes 4 RGBA frames and 4 warped foreground mask and return 1
stitched RGBA panorama frame. The foreground masks are not used in this version of
the stitcher. The seams of this stitcher are based on fixed cut offsets, which were found
manually by visual inspection. By overlaying the frames and finding the overlapping
sections, a straight vertical line was chosen as the cut line. All pixels on the left side
are taken from the left picture, all pixels on the right from the right frame. The actual
copying of the pixels is done using cudaMemcpy2D between the input and the output
buffers. Since the cuts are fixed and rectangular, we can simply copy the whole chunk
of data from each frame using only a single memcopy operation.

The pseudocode of the Stitcher looks like this:

1. For each camera:

(a) Copy the chunk of data between the previous cut offset and the next cut
offset from the current frame to the output panorama frame. The leftmost
camera use 0 as the previous cut offset, and the rightmost use the width of
the panorama as next cut offset.

Result

Figure 3.16 shows an example of the Stitcher module. Here we can observe our four
input frames stitched together to our final panorama output.

40

Figure 3.16: Result of stitcher, here shown slightly trimmed and without color correc-
tion to outline the seams.

Figure 3.17: The YUV Converter module

3.7.10 YUVConverter

Before the panorama frame can be encoded and written to disk it needs to be in the
correct format. In the previous SingleCamWriter this was done directly in the module
as the performance allowed for it. For the panorama however the conversion process
is slower, and thus must be singled out in its own module so that its writer does not
cross the real time threshold. The CPU version of this module always turned out too
slow, so we moved it over to GPU to get the performance needed.

Implementation

The YUVConverter is a GPU module taking a single RGBA panorama frame as input
and returning a YUV4:2:0 panorama frame. The input is first converted from RGBA
to YUV4:4:4 using the NPP library. This is done since NPP contains no functions to
convert directly to YUV4:2:0, so we first convert to YUV4:4:4 and then do a manual
conversion to YUV4:2:0 with our own code. Note that this could be done directly us-
ing one step using custom code, but since the current solution works and has good
enough performance we did not spend more time on improving it.

The pseudocode of the YUVConverter looks like this:

1. Convert the input frame from RGBA to YUV4:4:4 using nppiRGBToYCbCr_8u_AC4P3R().

2. Copy the returned Y’ channel into the correct position of the output buffer.

3. For all returned U and V channel samples:

41

(a) If to be sampled into the output YUV4:2:0 frame: Copy to correct position in
output buffer.

Figure 3.18: The Downloader module

3.7.11 Downloader

Since we are finished processing the panorama frame on the GPU side we use the
Downloader to bring the data back to the CPU side. The Downloader is very simi-
lar to the Uploader we looked at earlier, but has no other tasks except for the actual
downloading part.

Implementation

The downloader runs as a single threaded CPU module. It takes 1 YUV4:2:0 panorama
frame as input on the GPU side and returns 1 YUV4:2:0 panorama frame on the CPU
side. As mentioned this is a lot simpler than our previous uploader as it has only 1
frame to download, and doesn’t do any extra processing tasks. Unlike the uploader
the actual transfer is done synchronously with no double buffering as the performance
is good enough without.

The pseudocode of the Downloader looks like this:

1. Copy the panorama frame from GPU to host (CPU) using cudaMemcpy().

Figure 3.19: The Panorama Writer module

42

3.7.12 PanoramaWriter

Once the panorama frame is downloaded back to CPU we need to write it back to
disk, and this is the job of the PanoramaWriter. The PanoramaWriter shares much
of its functionality with the SingleCamWriter (section 3.7.4) but works with a single
panorama image instead of the four separate camera streams. There is also no extra
conversion done in this module, as the received frame already is in the correct format.

Implementation

PanoramaWriter is a single threaded CPU module, and takes in one YUV4:2:0 panorama
frame and writes it to disk. As with the SingleCamWriter it encodes and writes the
panoramas in 3 second H.264 files, where there filename consist of a file number and
a time stamp. As for file structure the final encoded frames are written to a different
folder than the single camera videos created by the SingleCamWriter.

The pseudocode for the module goes as follows:

1. If current open file has 3 seconds of data: Close it and open a new one with
updated timestamp and file number.

2. Encode the input panorama frame to H.264.

3. Write the H.264 frame to our current open file.

3.8 Storage

Storage is a very important part of a content pipeline such as this. Choice of output
format can have drastic impact on important factors such as size and processing time.
Several different formats were considered for our pipeline, and we will discuss some
of them briefly here.

3.8.1 Raw YUV

Raw YUV is the simplest way of storing the video data possible. It works by appending
several individual YUV-frames into a big one and then write that to disk. While this
approach is fast and easy it does not come without drawbacks. Firstly the format has
no header or metadata, so to read the files you must know the exact size and format
of the single frames in advance. Also while there are some basic YUV4:2:0 support in
players such as VLC [36] the overall support for the format is lacking, which means
that end users probably need a special built client to view the video.

Size wise raw YUV is also pretty lacking. While YUV in general works by using
lossy subsampling of the chroma channels, the compression ratio of this technique is
pretty low, leaving a pretty large final size. Since there are no complex compression
algorithms in use actually reading and writing these files are very fast, with the only
CPU hit being IO-overhead.

It should be noted that the original Bagadus prototype pipeline used raw YUV as
storage. Since it used its own player for playback the issue of format support was

43

irrelevant, and since it was done off-line using large disks the size or performance did
not matter much either.

3.8.2 XNJ

XNJ is a custom file format we developed internally to store frame data. As we needed
to store frames lossless with a custom metadata it was designed from scratch with such
goals in mind. XNJ is a container format which supports storage of any kind of payload
data, to which it will apply optional lossless compression (LZW). The metadata part
of the file consists of a variable length XML-document that can contain any amount of
user set metadata. Both these parts gets combined then prefixed with a special XNJ-
header containing useful parsing information like the sizes and bit-offsets for each
part.

A full working implementation of a XNJ writer and reader were made, and several
tests using payload frame data in YUV4:2:0 were tried. We found that real-time read-
/write performance using a moderate level of lossless compression is possible. This
includes parsing of the metadata from XML to usable variables in our code. In the end
however, we did not end up using this solution, as we found other ways to store the
needed metadata, and the overhead of XNJ therefore made it unsuited for our use.

3.8.3 H.264

H.264, also known as MPEG-4 part 10 or AVC, is an advanced motion-compensation-
based codec standard for video compression. It offers a very good size to visual quality
ratio, and is commonly used in many popular applications (e.g. Blu-ray films, video
steaming services like YouTube and Vimeo). Since we wanted the output from the
improved pipeline to be readable from a wide range of devices H.264 quickly became
a viable alternative, especially since there exists hardware acceleration support for the
format in many modern smart phones and tablets. After some testing we found that it
worked very well for our project, and implemented it as the standard storage option
for the improved pipeline.

Encoder

Encoding in done as part of the two writer modules in our pipeline. The encoder’s job
is to take the stitched frame data downloaded from the GPU and encode it into H264-
frames that then can be written to disk. Our encoder is based around the H264 wrapper
code in libNorthlight, which again uses the popular library x264 [19] for the actual
encoding. The reason for using H.264 is mainly the good compression rate possible,
making the output much smaller than an equivalent encoded in raw YUV4:2:0.

Realtime

In our initial setup of the pipeline the encoder was one of the parts that did not achieve
real-time performance during runtime. Some effort went into trying to speed it up by
changing the H.264 profiles used in the encoder, but our preset values were already

44

No threading Frame threads: AUTO Frame threads: AUTO
Slice threads: 4

Min 29 ms 29 ms 8 ms
Max 140 ms 115 ms 92 ms
Mean 34 ms 34 ms 10 ms

Table 3.2: H.264 performance. Encoding 1000 frames on an Intel Core i7 (table A.2)
using x264, includes writing to disk. AUTO is based on the amount of cores, in our
case it resulted in 6 threads.

optimized for speed, and there were no real gain. Looking into other ways to speed
it up we discovered that the northlight code interfacing x264 forced it to run single
threaded, which is hardly ideal for performance.

x264 has two threading models that can be used, slice or frame based. Frame based
is, as the name implies, based on frames, and here each thread will handle their own
frame. This is good for scenarios where you have access to multiple frames at once,
but hardly ideal for our sequential pipeline where each frame is processed from start
to finish before a new one is fetched. Some very mild speed improvements were seen
using this model though, but we suspect that is simply because each frame getting
their own thread simply speed up the loading and disposal/cleanup of said frame, not
anything related to the actual encoding.

The other model is slice based threading, and based around "slicing" frames up into
several chunks and let each thread work in parallel on their own slice. This is much
more suited to our pipeline, as we only work on a single frame, and parallelizing the
work should ideally provide quite a bit of speedup. While there are some penalties
associated with using slices for encoding [37], none of them had much effect in our
situation, and we got a nice speedup from it (see table 3.2).

3.9 Pipeline Performance

As we saw in section 2.4.4 the old pipeline was nowhere near real-time, as it was not
one of the goals of that implementation. However with this new pipeline we introduce
real-time as a new constraint and performance is therefore an essential attribute of the
whole system. The timings of all our modules running on an Intel Core i7 (table A.3 in
appendix A) can be seen in figure 3.20 and in table B.1. Here we can see that all mod-
ules individually perform well under the real-time threshold, even including the slight
controller overhead. As we saw in figure 3.2, the modules are all running parallel, so
as long as all the modules are under the threshold the whole pipeline will also be. To
show that the complete pipeline is running real-time we use another metric.

45

Figure 3.20: Pipeline performance on an Intel Core i7 (table A.3).

3.9.1 Write Difference Times

To show that the pipeline indeed run in real-time we use the write difference times
to show that our output frames gets written to disk within the allocated time. The
write difference is the time from a previous frame write finished to the next. For our
pipeline to be proper real-time this delay can not be longer than our time constraint (33
ms). Should modules start to take too long time the pipeline would be delayed and the
write difference time would quickly go above our threshold. The write difference times
are therefore a good way to see the general performance of our complete pipeline, end
to end.

Figure 3.21: Pipelien write difference plot

The scatter plot in figure 3.21 shows the write difference of a 1000 frame run on an
Intel Core i7 (table A.3). While there is a spread variation throughout, the average is
still at 33 ms which means that the performance is good. The delay between Single-

46

CamWriter and PanoramaWriter is due to the frame delay buffer (section 3.5) which
makes the later part of the pipeline wait for the ZXY data to sync.

3.9.2 Comparison with Old Pipeline

Only a few of the modules in the old prototype pipeline are directly comparable to
those in our new pipeline. A graph of the relevant ones can be seen in figure 3.22
and table B.2. The warper, stitcher and RGBA to YUV converter gain an impressive
speedup of 8.8×, 106× and 2.7× respectively. The reason why we get so good numbers
is likely because the original pipeline was built without much optimization in mind,
and the comparable modules all gain much speed from the parallelization introduced
with CUDA.

Figure 3.22: Old (CPU) vs. new (GPU) pipeline.

3.9.3 End-to-end Delay

When we say that our pipeline is running real-time, we mean that each step of the
pipeline performs equal to or below our real-time threshold (i.e., we can output frames
in the same rate as they come in). Naturally the entire pipeline will not be under this
limit, but as long as each frame traverses each module at this speed we get frames out
of the end of the pipeline with the same speed as we read them from the cameras. Each
module will however add delay, and the total time it takes from the start of the pipeline
to a final panorama is written to disk looks like this:

(10 + 150)× 0.033seconds = 5.33seconds

We have 10 modules, each processing the frame at 33 ms along the way. There is also
our 150 frame delay buffer (section 3.5) which must be waited out before we see our
final frame on the other side. Most of this delay is created by the use of the delay for

47

the ZXY data, but 5 seconds should still be within an acceptable delay period for most
real-world scenarios.

3.9.4 GPU Comparison

The pipeline was tested with several different GPUs to benchmark the performance,
and the results can be seen in figure 3.23 and table B.3. All the runs were executed on
an Intel Core i7 (table A.3) with the GPU being the only variable. A detailed list of
the different cards used and their specifications can be found in table A.5 and A.6 in
appendix A. Basically higher number indicates the newer card, with Titan being the
newest one.

Figure 3.23: Pipeline GPU comparison

We see that there is a clear pattern in the graph, the more powerful the GPU the
better the performance. All the cards from the GTX 480 and newer run the pipeline
under the real-time constraint with no problem. The older GTX 280, however, can
not keep up. We attribute this to the fact that GTX 480 and newer supports compute
version 2.0 which allows for concurrent kernel execution. Without this support, all the
CUDA code gets run serially, thus severely impacting performance. This would be the
case with GTX 280 card which only has support for compute version 1.3.

3.9.5 CPU Core Count Scalability

It is also interesting to see how performance scales along with CPU cores. During
development we got access to an Intel Xeon machine (table 3.3), a high end computer
with 16 physical cores. This proved very useful for CPU-testing, as we could enable
and disable cores as we wanted, and thus could get a good amount of different data
sets. Figure 3.24 shows a graph of our findings, corresponding numbers can be found
in table B.4.

48

Computer name Lincoln
CPU 2x Intel Xeon E5-2650 @ 2.0 GHz
GPU Nvidia Geforce GTX 580
Memory 64 GB DDR3 @ 1600 MHz
Pipeline output storage Samsung SSD 840 Series, 500 GB

Table 3.3: Lincoln specifications.

Figure 3.24: CPU core count scalability

We see in the graph that the pipeline scales nice with the core count. The gains
seem to flatten out a bit however, and from 12 cores and up the increase in performance
between steps are minimal. We also see that the modules using threading (Debarreler,
Uploader and the writers) are most positively affected by the core increase. This is
expected, as the OS can spread out the different threads to more cores.

The GPU modules are naturally not included in the graph as their performance
is mostly based on the GPU performance (section 3.9.4). It should also be noted that
the performance of the controller is lower on the Xeon machine than on our Core i7
(roughly 4 vs. 2 ms with all cores active). This is because the Xeon runs at the lower
core frequency of 2 GHz, while the Core i7 has 4.4 GHz. Single threaded modules like
the Controller does not scale well with the amount of cores, but does instead gain a lot
from the increased execution speed.

4 cores 6 cores 8 cores 10 cores 12 cores 14 cores 16 cores
Camera frame drops 75 26 7 9 6 8 8
Pipeline frame drops 729 327 67 0 6 3 3

Table 3.4: CPU core count scalability for 1000 processed frames (no frame drop han-
dling)

49

Frame Drops

In table 3.4 we see the number of frames dropped with the different core configura-
tions. Here we see that lowest configurations (4 and 6 cores) do not manage to keep up
with the pipeline and therefore dropping a lot of frames. Only at 10 cores and higher
are the drops within acceptable ranges. We can assume the tiny drop variations be-
tween 10 cores and up are due to other circumstances like OS or IO-interrupts. These
drops are also reflected in figure 3.25 where the diffs of the writers does not go under
the real time threshold before 10 cores or more.

Reader SingleCamWriter, di PanoramaWriter, di
30

35

40

45

50

M
e
a
n
 t

im
e
 (

m
s
)

4 cores 6 cores 8 cores
10 cores 12 cores 14 cores
16 cores Real-time threshold

Figure 3.25: CPU core count scalability for reader and writers

Effect of HyperThreading

The previous numbers were generated with HyperThreading (HT) enabled on all cores,
so naturally we made some tests with this technology disabled too for comparison. The
results can be seen in figure 3.26, table B.5 and 3.27, and the corresponding table B.5.

50

C
o
n
tro

lle
r

C
o
n
v
e
rte

r

D
e
b
a
rre

le
r

U
p
lo

a
d
e
r

S
in

g
le

C
a
m

W
rite

r

P
a
n
o
ra

m
a
W

rite
r

Module

0

10

20

30

40

50

60

M
e
a
n
 t

im
e
 (

m
s
)

4 cores, no HT 4 cores, HT 8 cores, no HT
8 cores, HT 12 cores, no HT 12 cores, HT
16 cores, no HT 16 cores, HT Real-time

Figure 3.26: HyperThreading scalability

R
e
a
d
e
r

S
in

g
le

C
a
m

W
rite

r, d
iff

P
a
n
o
ra

m
a
W

rite
r, d

iff

Module

0

10

20

30

40

50

60

70

M
e
a
n
 t

im
e
 (

m
s
)

4 cores, no HT 4 cores, HT 8 cores, no HT

8 cores, HT 12 cores, no HT 12 cores, HT

16 cores, no HT 16 cores, HT Real-time

Figure 3.27: CPU core count scalability for reader and writers with HyperThreading

We see that with a lower amount of cores we get a massive increase in performance
in threaded modules (e.g. the writers) by using HyperThreading. The other modules
generally perform equal or worse. If we look at the drops (table 3.5), we see that HT is

51

favorable up to 16 cores where the effect drops off.

4 cores,
no HT

4 cores,
HT

8 cores,
no HT

8 cores,
HT

16 cores,
no HT

16 cores,
HT

Camera frame drops 223 75 54 7 5 8
Pipeline frame drops 1203 729 477 67 3 3

Table 3.5: HyperThreading scalability for 1000 processed frames

Following these results it is very clear that running the pipeline on anything under
8 cores (with or without HT) will not work sufficiently. By using 10 or more cores we
get the performance we need, but at this core count disabling HT would prove a bit
more efficient than leaving it on.

3.9.6 Frame Drop Handling Performance

Thus far we have shown benchmarks not using the pipeline drop handling described
in section 3.6.2. This is because this feature can have a big impact on performance if
the CPU gets overloaded. To get better benchmark numbers of the modules without
any external interference we have therefore left it disabled while testing performance.
When running in the real world however this feature will be enabled, so it is also
interesting to see how the numbers look when it is actually running. We can see the
graph of such a run in figure 3.28 (also in table B.6).

We see that the runs using less than 8 cores seem to get a somewhat unexpected
performance boost. The reason for this is simply that using so few cores makes the
pipeline drop a lot of frames, which in turn makes the pipeline faster (as no processing
is done on dropped frames). The output of such a run will however look less than ideal,
as each dropped frame will be replace with the previously processed ones making the
video very jumpy. In table 3.6 we see the actual drop rates, and as previously it is only
at 10 cores it stabilizes at an acceptable level.

Controller Converter Debarreler Uploader SingleCamWriter PanoramaWriter
0

10

20

30

40

M
e
a
n
 t

im
e
 (

m
s
)

4 cores 6 cores 8 cores 10 cores 12 cores 14 cores
16 cores Real-time

Figure 3.28: Frame drop handling performance

52

4 cores 6 cores 8 cores 10 cores 12 cores 14 cores 16 cores
Camera frame drops 41 33 7 4 3 4 4
Pipeline frame drops 343 177 37 6 2 7 3

Table 3.6: CPU core count scalability, with frame drop handling, frame drops per 1000
frames processed

Write Difference Times

Figure 3.29 shows the new write difference times with frame drop handling enabled.
As we see the runs dropping frames (4, 6 and 8) all perform over the real-time thresh-
old. This is because the initial frame will we go over the threshold, dragging the per-
formance down, while the following frames will be skipped to try to catch up. With
drop handling on however even the dropped frames will never be processed faster
than the real-time threshold, thus never making the average time go down after the
initial bump.

Reader SingleCamWriter, diff PanoramaWriter, diff
30

35

40

45

50

M
e
a
n
 t

im
e
 (

m
s
)

4 cores 6 cores 8 cores 10 cores 12 cores
14 cores 16 cores Real-time

Figure 3.29: Frame drop handling, write difference times

3.9.7 CPU Core Speed Comparison

We also did some additional testing of the pipeline using different CPU core frequen-
cies. Our main testbox (table A.3 in appendix A), which mirrors the machine currently
at Alfheim, has an i7-3930K CPU running at 3.2 GHz. Since the machine has adequate
cooling and the CPU has an unlocked multiplier, the machine can easily be overclocked
to boost performance. We therefore tried our pipeline at several overclocked frequen-
cies to see how it fared. The results can be seen in figure 3.30. The results are as ex-
pected a pretty linear drop in processing times when the frequency rises. We also see
from the write differences in figure 3.31 that the pipeline still keeps the under the real-
time threshold with these new frequencies. So since the overclock to 4.4 GHz proved
both stable and added a boost to pipeline performance we decided to keep it.

53

Controller Converter Debarreler Uploader SingleCamWriter PanoramaWriter
0

10

20

30

M
e
a
n
 t

im
e
 (

m
s
)

R

Figure 3.30: CPU frequency comparison

Reader SingleCamWriter, diff PanoramaWriter, diff
30

31

32

33

34

35

36

M
e
a
n
 t

im
e
 (

m
s
)

R

Figure 3.31: CPU frequency comparison, write difference times

3.10 Web Interface

To enable non-technical users to interact with our pipeline a simple web-interface was
constructed (figure 3.32). The interface can be opened on any web browser, and gives
full access to all functionality from the command line program directly in the browser.
The standard workflow of scheduling a record session is as simple as just entering
the dates and times into the form and pressing the schedule button. A list of currently
scheduled tasks are always available at the bottom of the page, and cancelling a job is
done by pressing the stop button next to it.

54

Figure 3.32: The new pipeline’s web interface

The web interface is running from an Apache2 installation on the pipeline machine,
and the page itself is written in the server side scripting language PHP. Getting the list
of scheduled tasks is a simple grep search after pipeline processes on the active process
list (from the command line program ps), and then parsing the returned matches using
the string functions in PHP. Killing entries is done by launching kill with the process id
found in the previous search. And the actual launching of a new scheduled pipeline
run is done by forking a new shell and launching the pipeline process (with the user
supplied times and dates) directly from that.

Since the default apache2 user (www-data) lacks privilege to do most of these
things some extra configuration steps were needed to get everything working. First
of a new user with proper permission to read and write all the pipeline’s files must be
created and set as Apache2’s RUN_USER. Secondly apache chroots its running user to
the designated web folder (/var/www-data), meaning that you can never go longer
up the file tree than that folder, and effectively denying us access to all files we need.
We found no simple way to disable chroot in apache, so to solve the problem we simply
sat the web folder to the root of the file system effectively making the chroot useless.

3.11 Future Work

There are several issues and potential improvements with this new pipeline, and we
will mention some of them here.

A lot of the system per now consists of configurations that are manually found and
then hardcoded into the system. This solution requires a complete rebuild if things are
changed and is not very elegant for deployment. During our work on the system we

55

often discussed the need for a separate XML-based program to handle all the configu-
ration data, but unfortunately time never allowed for it to be made.

With regards to color space it could be interesting to see if we could keep the whole
pipeline in the same one all the way through. We spend some time converting between
RGB and YUV along the way, and it would be interesting to see if it would be possible
to avoid this all together. The reason for RGB, as mentioned earlier, is that it is much
easier to work with when testing and implementing components. Since we now have
a fully working pipeline implementation trying to retrofit it to work directly on YUV
all they way through could be an interesting challenge.

Most of the modules are only optimized until they are "good enough", i.e., under
the real-time threshold for our current scenario. For future scalability this might no
longer be good enough, so more effort should be devoted to improving general per-
formance. Especially modules like the Debarreler, which currently use stock OpenCV
code, has great potential for improvement either through smarter or a new from scratch
implementation.

In the future we would like to see support for better cameras. This would allow
for much better quality pictures and crops, but would drastically heighten the perfor-
mance requirements. As we have seen we are already pushing the existing hardware
pretty hard, so by introducing the increased pixel count from future 2K and 4K cameras
would probably lead to many scalability issues. We do however have access to equip-
ment that can help mitigate the load, such as using multiple GPUs in SLI-configuration
or Dolphin expansion cards [38] that allows us to distribute processes and memory
among several physical machines.

3.12 Summary

In this chapter we have looked at how we created an improved video stitching panorama
pipeline based on the previous implementation in our Bagadus system. We first looked
at how the setup differs from the old system, before we looked deeper at the implemen-
tation of the components. All modules in the system were then throughout explained,
and we look closely at how they are put together and how they work. Following this
we dedicate a large section to performance numbers of our pipeline, before a brief
section about the web interface used to control it. Lastly we have a part about some
current issues and future improvements we would like to see in our system.

In the next chapter we will investigate the stitcher module in detail, and how we
have evolved it from the simple version in our first prototype, to the much more pow-
erful version currently in use.

56

Chapter 4

Stitcher

We have described the stitcher earlier, first briefly in chapter 2 and then a bit more
in-depth in chapter 3. However, since the main focus of this thesis is the stitching
part of our pipeline, we will spend this entire chapter looking at the stitching module
in fine detail. As we saw in the earlier chapters, our static seam stitcher produced
working panorama images, but with possible visual artifacts. The performance of the
first stitcher was also very poor. In this chapter we will first look at how we improved
the existing stitcher, before we continue to the new dynamic stitcher that was later
implemented.

4.1 Improving the Initial Stitching Code

The initial stitching code (in our prototype pipeline (section 2.4.3)) had pretty bad per-
formance, resulting in very slow execution speed. Since the overall goal of our stitching
work is to try to get the code running as close to real-time as possible, some work went
into speeding up the existing stitching implementation.

4.1.1 Vanilla Implementation

In the non-modified prototype implementation (section 2.4.3), our stitch was a product
of several steps. The following is the pseudocode for the operations used, start to
finish:

1. Find shared pixels between the 4 cameras, generate warp transforms.

2. Calculate the size of complete stiched image (full panorama size).

3. Warp pixels.

4. Pad the warped camera images to fit the resolution of the output image. The
padding will be applied in such a way that the image is moved to same position
it would have in the output.

5. Loop through all pixels of the output image. Choose from which camera to take
the value based on static cuts. Since the images have been padded to be directly

57

58

overlayed, it’s a simple out(x,y) = in(x,y); operation, where in is set to the correct
camera based on the cuts.

6. Crop the final image based on fixed crop values.

Note that the stitcher itself is only step 5, the rest are done in other parts of the
system. The approach outlined here is not very smart, and we will now look closer at
how it can be improved.

4.1.2 Optimizing Border and Cropping

As previously mentioned, the vanilla approach is slow and not very efficient. The first
obvious fix to try to boost the performance is to look at the padding part. Since each
of the 4 frames gets padded to the whole size of the calculated output image, we’re
throwing a lot of memory at a problem that can be solved by a smarter approach. By
not padding the pictures and instead using an offset when plotting the pixels in the
output image, we can get exactly the same result with a lot less memory.

In the final step, the output image is cropped with some fixed values to shave off
some of the rougher parts of the image. Basically, this means that anything outside the
cropping zone will not carry over to the final image, and therefore can be discarded.
By making the loop setting the pixels in the output to skip these pixels we do get a
slight speed improvement over the vanilla version. Using the default sizes and crop
offsets, we reduce the amount of horizontal pixels from 10 233 to 5 414 (∼ 53%). An
illustration of the cropping can be seen in figure 4.1.

Figure 4.1: Optimized crop

4.1.3 Optimizing Matrix Operations

The next optimization is to look at how the values are set in the output image. In the
vanilla implementation, the loop setting the pixels runs through each of the three color
channels (RGB) for each pixels and manually setting them based on the cut offsets. This
is a very slow operation, and by far the biggest bottleneck in the whole program after
the earlier cropping optimizations had been implemented. Since the cuts are static we
know exactly how many pixels from each camera we want, and implementing a better
way of setting the data is trivial.

Our approach is to directly copy the needed data from the selected camera to the
output picture using the block memory copy call memcpy. Both the camera data and
the output image is in the native OpenCV matrix format CV_8UC3, where each color
channel is stored in an unsigned byte and lying sequentially in memory

(i.e., R1 G1 B1 R2 G2 B2 . . .). So to copy a line of pixels, we just memcopy a range
starting from the offset of the first pixels with the length of the amount of pixels needed

59

times 3 (since we need all channels). Since our cuts have a fixed size, we know exactly
the width we need from each camera, and we can therefore reduce looping through the
5 414 horizontal pixels manually to four memcpy operations (one from each camera) for
each vertical line. Figure 4.2 illustrates how this copy operation looks.

...

...

...

...

...

...

...

Static cut

Warped camera frames

Stitched panorama

...

...

Overlap

...

... ...

...

...

...

...

...

Camera 1

Camera 2

Figure 4.2: Data copy operation in the improved fixed cut stitcher. Each arrow is an
individual memory copy operation, and the panorama gets filled in row by row, left to
right.

Table 4.1 shows the performance running on an Intel Core i7 machine (See Fillmore,
section A.1.1). We see that our implemented optimizations have a fairly good effect on
the performance, with the matrix version giving an 82% decrease in run-time from the
initial implementation. Unfortunately, the times are still much too high for real-time
use, so even further optimization must be investigated.

Vanilla Border and crop Matrix
Time (ms) 998.7 629.6 178.8

Table 4.1: Stiching data for 4 frames

4.1.4 GPU Hybrid Using OpenCV

While the CPU version got much improved using the previous optimizations, the
stitching times were still far from ideal, and a totally unacceptable if we wanted it to
run real-time. We therefore quickly realized that we needed a better solution to speed
up the performance. Since work at that time had started to move the whole panorama

60

pipeline over to GPU, we also investigated how we could get the stitcher to run on it
too.

Since the initial pipeline was built using mostly OpenCV operations and all our
frame data was stored in the cv::mat format, we first tried using the built in GPU func-
tions. The OpenCV_GPU [39] module can be enabled by recompiling the library with
certain flags set, and gives access to some GPU-accelerated functions that can severely
boost performance.

A test version that did both the warping and the stitching step of the pipeline on
GPU using the GPU-accelerated OpenCV functions was conducted. We quickly dis-
covered that the overhead and execution time using this approach was much worse
than the previous CPU-version, and not at all useable in our improved pipeline. Fur-
ther experimentation using OpenCV was therefore scrapped in favor of building a pure
implementation from scratch.

4.1.5 GPU Version Using NPP/CUDA

As the OpenCV_GPU experimentation proved fruitless, we started looking into alter-
natives to get the stitcher to run directly on GPU. We quickly discovered Nvidia Per-
formance Primitives (NPP) [34] which is a CUDA-wrapping utility library for image
manipulation and other common GPU-tasks. NPP contained all the functionality we
needed to run both the warper and the stitcher step directly on GPU while keeping
the frame data in the GPU-memory between the steps. The actual stitching is done the
same way as described in section 4.1.3, but now using NPP specific GPU-functions.

Table 4.2 shows the performance of our NPP-based warper+stitcher running on an
Intel Core i7 machine (See Fillmore, section A.1.1). As we see in the table this approach
proved very fast, and shows that real-time performance of both the warper and stitcher
definitively is possible on GPU. The total run-time is high as it includes the slow NPP
GPU-initialization step, but this is only required once at the very start of a run.

NPP implementation
Warping step 67 µs
Stitching step 38 µs
Total run-time 540 ms

Table 4.2: Stiching and warping times for 4 frames using NPP

With the stitcher now running at microsecond times, further improvement of the
fixed cut stitcher is strictly not needed anymore. Using the NPP implementation we
can achieve real-time performance, producing the exact same panorama as the vanilla
implementation, using only a fraction of the time. With the performance requirement
now being covered, we started looking into how to further improve the stitcher using
other means, and this is covered in the next section.

61

4.2 Dynamic Stitcher

As we observed above (section 4.1.5), we could run the old stitcher in real-time on
GPU. Since we then needed to move it into its own separate module as part of the
new improved pipeline (section 3.7.9), we looked into how we could try to actually
improve it at the same time. As the performance requirement was now regarded, the
focus would be on the visual quality and how that can be enriched. The panoramas
made using the fixed cut stitcher were serviceable, but allowed for visual errors due
to its static nature. Hoping to better this, we quickly decided that we wanted to try to
make a more dynamic version of the stitcher, which will be detailed in this section.

4.2.1 Motivation

While a static cut stitcher runs very fast and often can give good enough results, there
are several scenarios where it will not give optimal output with regards to the visual
result. Especially motion or object movement around the seam area can result in vi-
sual artifacts and distortion (see figure 4.3). By having a more dynamic seam that can
smartly route around important parts of the image, one can achieve a much better
looking stitch.

Figure 4.3: Examples of players getting distorted in static seam.

Another big advantage of a dynamic stitcher is that it can take image color varia-
tions into account when creating the seam. The idea behind this being that it can route
the seam through areas in the overlapping frames where the colors match, making the
cut more seamless and harder to spot. This would of course require the stitched images
to already be color corrected, so that the frames have a common color balance (which
the pipeline does as described in section 3.7.8).

4.2.2 Related work

There are many relevant papers on dynamic stitching, but the approach closest to our
pipeline is Mills [10]. While Mills only use color and pixel differences as a base for

62

seam detection, we also have our ZXY-data to be able to detect potential player pixels,
which again mean we can get away with a simpler color difference checker. Mills also
uses blending for creating the final panorama, which we do not as it can introduce an
unwanted visual effect called ghosting.

We also both use Dijkstra’s algorithm [40] (Dijkstra) for finding the actual seam, but
Mills does unfortunately not document anything about his actual implementation at
all. It is only mentioned that it is done in Matlab, and that it uses 56 seconds on two
300 x 400 pixel images, which is relatively slow.

4.2.3 Implementation

In this section, we will take a deeper look at the implementation details of our dynamic
stitcher by walking through each of the steps.

Preparation

For each seam the implementation has several requirements that must be met before it
can start working.

• First is the two images to stitch, which must be properly debarreled and warped
to the correct perspective. In our pipeline this is done in previous steps and the
frames delivered to the stitcher module are all ready for stitching.

• Second is the offset position for the stitch, for each seam we need the position in
the output (panorama) frame where we want the stitch to be. In our implemen-
tation these offsets are found manually by overlapping the warped images and
finding a suitable position within the overlap (more detailed in the next section).
Ideally some sort of automated way of finding the offsets would be preferred, but
there were no time to develop such a system.

Once we have these prerequisites, we can move on to the next step.

Find Search Area

After the overlapping parts of the frames have been found and matched, a search re-
gion for the seam can be established using a position within the overlap as the main
offset. As mentioned earlier the offset value is manually found and hardcoded into
our config for each seam. Since our camera setup is static, and the cameras will never
move during execution, this is only done once. When we have this value we can create
the search area itself by making a rectangle centered at the offset, with an adjustable
width, over the pixels in said offset. The width needs to be flexible as the actual over-
lap can differ between frames, and having a too big area might introduce bad seams.
A smaller width also makes the search area smaller, resulting in a small performance
increase in favor of a potentially less dynamic seam. To ensure a good seam the search
area width should therefore always be bigger than a single player’s largest width in the
frames in question (to be able to route around him), and never bigger than the overlap
of the frames. Figure 4.4(b) shows an example of a typical search area.

63

(a) Overlapping section between two warped
frames.

(b) Yellow shows suitable area for search. Red
shows typical seam search area 100px wide.

Figure 4.4: Finding the overlap and seam search area.

Creating a Graph

Our seam detection is done using a simplified version of Dijkstra’s algorithm (later
detailed in section 4.2.3), so for that to work we first need to create a graph to work on.
When the search area discussed above (section 4.2.3) has been found we treat the pixels
contained within as a graph in order to make a seam. Each pixel represents a node, but
edges between them needs to be established to enable traversing of the graph. How the
outbound edges of each node is set up can greatly affect the final seam will look, but in
general we want each pixel to relate only to adjacent pixels. If we allow for diagonals,
an ordinary pixel in a grid will have 8 adjacent pixels. We will traverse the graph from
bottom to top and we ideally want as straight line as possible with no backtracking.
We will therefore not add edges going downward from a node, thus reducing the edge
count to 6. Horizontal lines in the seam also has a tendency to be very noticeable
regardless of the stitch quality, so in order to avoid these we also do not add edges
to nodes directly left or right of the current node. And so each node will only have
3 edges, the nodes above, above-left and above-right of the current position. There
are of course edge cases at each end of the search width, where the left and rightmost
pixel only will have two upwards adjacent pixels. Figure 4.5 shows all three unique
pixel positions encountered and how their edges will look. Note that the topmost row
of nodes will not have any outbound edges, as we don’t want to move out of bounds
while searching.

Assigning Weights

Each of these edges also needs an associated weight for the seam detection to work in
a similar, but simplified version of the Dijkstra algorithm. The weight is based on the
colors of the two images we are stitching, and is found using the current function:

|Image1(x, y)− Image2(x, y)|+ ZXYweight

Image1 and Image2 are the left and right images of the current stitch. The returned value
is the pixel color (in RGB). ZXY weight is a predefined, and very high, value added to

64

Figure 4.5: How nodes in the graph are connected. B shows a normal pixel with three
outbound edges, A and C shows the edge cases only connecting to two adjacent nodes.

the weight if there is a player visible on the pixel in any of the frames (figure 4.6). We
use the look up map from the background subtractor to check this. The end result of
these edge weights is that paths to pixels where the differences between the stitched
images are smaller cost less. And if a player is present in the pixels, the cost skyrocket,
making it an unattractive option. It should also be noted that using color corrected
images will yield much better seams than non-corrected ones; this is one of the reasons
for why we have a color corrector module earlier in the pipeline.

(a) Original frame. (b) Same frame with ZXY weighted pixels over-
layed in white.

Figure 4.6: Example of the ZXY weighted pixels in a frame. White pixels will get
an almost infinite edge weight when constructing our seam graph, to avoid cutting
through players.

Once we have established both a search area and constructed both the directed
graph and set all the edge weights, finding the actual seam is trivial. By applying a
shortest path algorithm to our graph, we will get the path through it with the least
cost. As mentioned earlier we use a simplified version of the Dijkstra algorithm. Since
the cost is modeled directly after the colors in the pixels, the lowest cost path is usually
the one with the least variation and thus as seamless as possible.

65

Dijkstra Algorithm

For solving the graph we use the common Dijkstra shortest path algorithm. Several
pre-existing graph libraries and Dijkstra implementations for C++, like Boost Graph
Library (BGL) [41], Lemon [42] and LP [43] were tested.

LP Lemon Own
Create graph 248.19 16.24 10.97
Run Dijkstra 829.64 25.92 15.57
Total 1077.83 42.17 26.54

Table 4.3: Time (ms) for the different Dijkstra implementations.

These CPU-libraries would work fine but usually have very tricky initialization
steps for mapping the pixels to a graph and also somewhat lacking overall perfor-
mance (see section 4.3). None of them had code that was easy to port over to GPU
either. In the end we decided to go for our own implementation of the algorithm. By
making everything ourselves we would not only get fine grained control over how the
graph is made, but also allow us to tweak certain properties in the interest of speeding
things up.

The Pseudocode for our Dijkstra solver looks like this:

1. Make two empty arrays PrevNode[] and MinDistance[], with the dimensions of
the seam search area.

2. Set the bottom start position (lowest cut offset point) of MinDistance to 1.

3. Start from the bottom of the graph, for each row until we reach the top:

(a) For each pixel P in current row:

i. If MinDistance[P] is not 0: For all adjacent pixels P2: Value = MinDis-
tance[P] + P2 edge weight. If Value < MinDistance[P2]: Set MinDis-
tance[P2] = Value and PrevNode[adjacent pixel] = pixel.

4. By iterating through PrevNode[] starting from PrevNode[end position] we get
the path through the graph.

This is fairly close to the standard algorithm, but since our graph is directed upwards
we are never going back to earlier rows. In standard implementations backtracking
are solved using slow list operations, but since we are avoiding that we are getting a
decent speed boost. This version of Dijkstra is also easy to port over to CUDA, which
was an important factor for our pipeline.

66

CUDA Implementation

Our stitcher implementation is written directly for CUDA as .cu file and compiled to-
gether with the rest of the pipeline. It is initialized by the pipeline controller at startup,
and is then executed by the Stitcher module as we saw in chapter 3.

We are utilizing the parallelism in CUDA by running parts of our stitching at the
same time. The complete stitch is done in two steps. First the seams between our four
frames are found using the graph technique detailed above. These three operations,
i.e., finding the 3 seams between the four cameras, are all running in parallel. Then
when we have all the offsets from the seams, we copy the data from the individual
frames to the final output panorama using 32-bit memory transfers as this improves
speed. We do this by splitting the whole image we want to transfer into 32-bit chunks,
and then by running all of the copy operations simultaneously. This is done using CU-
DAs support for parallel kernel execution. We make one CUDA thread with a simple
copy operation for each 32-bit block to copy, and then all the threads are launched at
the same time.

4.2.4 Performance

Table 4.4 shows the timings for our dynamic stitcher, both the CPU and the GPU ver-
sion. Both are well within our real-time threshold (33 ms). The "low"-value on GPU
is zero due to our frame drop handling causing the module to not run on dropped
frames, while still being timed.

Also note that the CPU-version has a lower mean than our GPU-version. This is
most likely due to the GPU-version not being optimized well enough, and it should
potentially be possible to even them out with further work on the GPU-code. The
reason we are not using the CPU-version is that the rest of our pipeline is on GPU,
and movement of data between GPU and CPU incurs a big performance penalty. We
therefore keep all data on the GPU for as long as possible to avoid this, even if it means
using some GPU-modules that is slower than their CPU counterparts.

Min Max Mean

CPU (Intel Core i7-2600) 3.5 4.2 3.8
GPU (Nvidia Geforce GTX 680) 0.0 23.9 4.8

Table 4.4: Dynamic stitching (ms).

4.2.5 Results

A typical output frame from the dynamic stitcher can be seen in figure 4.7. Note that
the cuts are no longer straight, but the seams are still visible due to the color correction
being slightly off. In figure 4.8 we see a comparison of the the different stitchers using
ideal and properly corrected frame data.

67

Figure 4.7: Dynamic stitcher output, here shown in full using an earlier color corrector
version and experimental white balance correction in our camera driver.

(a) Fixed cut stitch with a straight vertical seam,
i.e., showing a player getting distorted in the
seam.

(b) The new stitch pipeline: a dynamic stitch
with color correction, i.e., the system search for
a seam omitting dynamic objects (players).

(c) Dynamic stitch with no color correction. (d) Dynamic stitch with color correction.

Figure 4.8: Stitcher comparison - improving the visual quality with dynamic seams
and color correction.

4.2.6 Future Work

The dynamic stitcher was thought out and implemented in a relatively short amount
of time. While already working great for our purpose there are some shortcomings
and improvements that we would like to see in the future, and we will discuss them
here.

68

Seam Jitter and Noise

The current dynamic stitcher has no kind of condition check, so it will run on every
single frame of the video, thus potentially changing the seam every frame too. In an
ideal scenario the frames delivered to the stitcher will be perfectly warped with no
picture noise and excellent color correction, and the seam will not be visible at any
point even if it changes a lot each frame. In real life however, the warps are far from
perfect and the color correction might be off at times, making the seams very visible at
certain points. Our cameras also introduces a lot of sensor noise (especially in bright
conditions), which makes the seam change a lot as it tries to route around it. Since our
warps are mostly calibrated around the field itself that part of the image will mostly
look good regardless, but the surrounding stadium background (like the bleachers etc.)
usually will not. This noticeable seam change in visible areas (however small) is easily
seen in the video, and can be perceived as an annoyance for some.

There are several ways to solve this problem; the best is probably better calibration
of the whole system, and better cameras or camera configuration to counter the image
sensor noise. Recalculating the warp matrixes using calibration points not only on the
field, but also on the surrounding geometry should make the whole stitch more seam-
less, thus making the seam jitter harder to spot. With lower noise the seam will simply
change less. Another way to tackle this would be to introduce limiting to the stitcher,
either by only running it every x number of frames, or at some kind of event. Since we
only really need to recalculate the seam when a player is walking through it, scanning
the ZXY-coordinates for such an occurrence every frame and only then run the stitcher
could work. Note that there are some gains from running the stitcher every frame
that would be lost if this doesn’t happen. For instance lighting or other background
changes can make the current seam more visible, and since it could potentially take a
long time for it to update it would also be noticeable on the video.

Neither of these fixes was tried as there simply was not enough time to test them
properly in this thesis.

Dynamic Search Area

The search areas we described in section 4.2.3 are statically set for the reasons discussed
there. There can however occur situations where enough players cross the search area
simultaneously that the stitcher will have to route through some of them. It would
therefore be useful to detect such situations, and change (or move) the search area
boundaries accordingly. Note that making this area too large can have a very negative
impact on performance as the generated graph size will grow very fast. In a dynamic
system great care must therefore be taken not to allow them to grow too much, as this
quickly could make the module cross our real-time threshold.

4.3 Summary

In this chapter we have covered the stitcher component in our pipeline. First we looked
at how we improved parts of it from the relatively slow original implementation in

69

Bagadus, and slowly moved it over to GPU. Then we saw how it changed from a sim-
ple static cut stitcher to a full blown dynamic one, using ZXY and color data to avoid
players and make seamless cuts. We also covered why such a stitcher is useful, and
how it is constructed and implemented. We then looked at the performance figures,
the output images it produces and finally some future work that remains on the stitcher
to further improve the performance.

70

Chapter 5

Conclusion

In this chapter we present a summarization of our work in this thesis. We then look at
our contributions, and finally a brief look at future work.

5.1 Summary

In this thesis we have improved upon the old Bagadus system which we described
in chapter 2. We went through the setup of the system, and how the main parts and
components worked together to provide a simple panorama stitching solution. We
then looked at the performance numbers, and then a bit at the stand alone player made
for playing back the generated video.

Following the old setup, we looked at the improved panorama pipeline in chap-
ter 3. Here we described how we restructured the whole original Bagadus setup and
moved parts of it from a CPU over to a GPU. We also introduced some new modules
and a real-time constraint, and discussed how we are able to get the whole system
running on-line by using a modular pipeline approach. We also took a brief look at
the custom web interface developed to control the system for people without technical
expertise.

Chapter 4 was devoted entirely to the stitcher module. We first looked at how it was
improved gradually from the very first version into what it is today. Then we looked
at how to improve the stitching itself, and how our static seam stitcher changed into a
full dynamic one. We go into details about how the seam creation and actual stitching
is performed before we look at how the performance holds up. In the end we looked
at some improvements that could be implemented to get it even better.

5.2 Main Contributions

We have shown in this thesis that a real-time panorama video stitching pipeline us-
ing four HD-cameras can be made. The pipeline was based on the previous Bagadus
prototype, and is currently successfully installed and running at Alfheim stadium in
Tromsø. A planned goal of the project is for it to be used for matches in the upcoming
soccer season.

71

72

We have shown that by utilizing GPUs we can achieve excellent performance and
improved visual quality while still keeping the system running in real-time. The whole
system is run on a single inexpensive commodity computer using standard off the shelf
hardware. The total end-to-end delay of just 5.3 seconds also means that processed
video can be delivered to receivers in reasonable time, which for instance means that a
coach can view video from the first period during the half-time break.

Lastly we have looked at the stitcher and how we improved it to produce much
better seams. By routing around players instead of through them we can produce
much cleaner and better looking panorama frames in our system. Combined with the
color corrector we are also getting much smoother seam transitions, which again leads
to much increased visual quality.

5.3 Future Work

We discussed some of the future work of the pipeline in section 3.11. For instance
we would like to see better configuration tools for setting up and deploying the whole
system. We also would like better scalability for future improvements, including better
cameras. Future work for the stitcher module is mentioned in section 4.2.6. Here, ways
to combat seam jitter due to noise were discussed, and also how to a more dynamic
search area could be useful.

As for the whole project itself, the overall goal is to be able to deliver a full analysis
system, ready for deployment and use at any stadium. There is still work left before the
project reaches that point, but this improved panorama stitching pipeline represents a
major milestone in the back-end of such a system. For the system to be complete it
would also require a powerful front-end to present all the generated data in a useful
way for coaches and other users. Work has already started on such a front-end delivery
system, and once this is properly established the whole system will be a whole lot
closer to its intended goal.

Appendix A

Hardware

A.1 Computer specifications

A.1.1 Fillmore

Fillmore is my primary development workstation at the lab. While it has a fairly
good CPU it lacks the GPU-power needed for the more intensive pipeline tasks, which
means that these are run on other machines.

Fillmore

CPU
Type Intel Core i7-2600
Frequency 3.40Ghz
Cores (Real/Virtual) 4/4

GPU
Type nVidia Quadro NVS 295
Compute capability 1.1

Table A.1: Fillmore specifications

A.1.2 Devboxes

These computers are various machines set up explicitly for testing our pipeline.

Computer name DevBox 1
CPU Intel Core i7-2600 @ 3.4 GHz
GPU Nvidia Geforce GTX 460
Memory 8 GB DDR3 @ 1600 MHz
Pipeline output storage Local NAS

Table A.2: DevBox 1 specifications

73

74

Computer name DevBox 2
CPU Intel Core i7-3930K @ 4.4 GHz
GPU Nvidia Geforce GTX 680
Memory 32 GB DDR3 @ 1866 MHz
Pipeline output storage Samsung SSD 840 Series, 500 GB

Table A.3: DevBox 2 specifications

Computer name DevBox 3
CPU Intel Core i7-960 @ 3.20GHz
GPU Nvidia Geforce GTX 480
Memory 6 GB DDR3 @ 1066 MHz
Pipeline output storage N/A

Table A.4: DevBox 3 specifications

A.2 GPU Specifications

These are the specifications of the various cards we looked at in our GPU comparisons
(section 3.9.4).

GPU G98 GT200 GF100
Name Quadro NVS295 Geforce GTX 280 Geforce GTX 480
CUDA cores 8 240 480
Graphics clock 540 MHz 602 MHz 700 MHz
Compute capability 1.1 1.3 2.0
Total memory size 256 MB GDDR3 1024 MB GDDR3 1536 MB GDDR5
Memory clock 695 MHz 1107 MHz 1848 MHz
Memory interface 64-bit 512-bit 384-bit
Memory bandwidth 11.2 GB/s 141.7 GB/s 177.4 GB/s

Table A.5: GPU specifications, part 1

GPU GF110 GK104 GK110
Name Geforce GTX 580 Geforce GTX 680 Geforce GTX Titan
CUDA cores 512 1536 2688
Graphics clock 772 MHz 1006 MHz 837 MHz
Compute capability 2.0 3.0 3.5
Total memory size 1536 MB GDDR5 2048 MB GDDR5 6144 MB GDDR5
Memory clock 4008 MHz 6000 MHz 6008 MHz
Memory interface 384-bit 256-bit 384-bit
Memory bandwidth 192.4 GB/s 192.2 GB/s 288.4 GB/s

Table A.6: GPU specifications, part 2

75

A.3 Cameras

A.3.1 Basler Ace

Here follows the specifications of the Basler Ace cameras used in our setup.

Basler Ace A1300 - 30gc

This is the standard camera we use in our panorama stitcher.

Resolution horizontal/vertical 1294 x 964 pixels
Max frame rate 30 fps
Sensor type CCD
Sensor size 1/3"
Supported Output Formats Mono 8, Bayer BG 8, Bayer BG 12, Bayer BG

12 Packed, YUV 4:2:2 Packed, YUV 4:2:2 (YUYV)
Packed

Table A.7: Specifications for Basler Ace A1300 - 30gc

Basler Ace A2000 - 50gc

The 50gc is better version of the 30gc with a bigger image sensor and support for higher
resolutions. We only have one of these, and use it strictly for testing purposes.

Resolution horizontal/vertical 2046 x 1086 pixels
Max frame rate 50 fps
Sensor type CMOS
Sensor size 2/3"
Supported Output Formats Mono 8, Bayer BG 8, Bayer BG 12, Bayer BG

12 Packed, YUV 4:2:2 Packed, YUV 4:2:2 (YUYV)
Packed

Table A.8: Specifications for Basler Ace A2000 - 50gc

76

Appendix B

Extra Tables

Overall Pipeline Performance

Referenced in section 3.9.

Computer DevBox 2
Controller 1.791
Reader 33.285
Converter 13.855
Debarreler 16.302
Uploader 23.892
Uploader, BGS part* 13.202
BGS 8.423
Warper 15.391
Color-corrector 23.220
Stitcher 4.817
YUVConverter 9.938
Downloader 12.814
SingleCamWriter 24.424
PanoramaWriter 19.998
SingleCamWriter, diff 33.339
PanoramaWriter, diff 33.346

BGS, ZXY query† 657.597
Camera frame drops/1000 4
Pipeline frame drops/1000 0

Table B.1: Overall pipeline performance
Mean times (ms)

* Not a separate module, but is a part of the total Uploader time usage
† Not a module affecting the real-time constraint of the pipeline. Is executing separately

Old versus New Pipeline

Referenced in section 3.9.2.

77

78

Pipeline Version New (GPU) Old (CPU)
Warper 15.141 133.882
Stitcher 4.912 521.042
Converter 9.676 26.520

Table B.2: Old vs new pipeline.
Mean times (ms). DevBox 2.

GPU Comparison

Referenced in section 3.9.4.

GPU GTX 280 GTX 480 GTX 580 GTX 680 GTX Titan
Uploader 73.036 27.188 23.269 23.375 22.426
BGS 36.761 13.284 8.193 7.123 7.096
Warper 66.356 19.487 14.251 14.191 13.139
ColorCorrector 86.924 28.753 22.761 21.941 19.860
Stitcher 23.493 8.107 5.552 4.307 4.126
YUVConverter 41.158 13.299 9.544 9.566 8.603
Downloader 53.007 16.698 11.813 11.958 11.452

Table B.3: GPU comparison, mean processing times (ms)

CPU Core Count Scalability

Referenced in section 3.9.5.

Module 4 cores 6 cores 8 cores 10 cores 12 cores 14 cores 16 cores
Controller 4.023 4.103 3.898 4.107 3.526 3.906 3.717
Reader 32.885 33.132 33.275 33.292 33.287 33.280 33.281
Converter 18.832 16.725 15.170 13.601 12.635 12.874 12.319
Debarreler 27.469 19.226 16.903 14.573 13.171 12.659 12.106
Uploader 35.157 29.914 26.883 24.253 24.422 23.814 22.725
Uploader, BGS part* 18.482 15.865 14.325 13.171 12.474 12.505 11.834
SingleCamWriter 40.752 30.160 26.754 23.776 22.416 21.800 21.173
PanoramaWriter 35.405 23.865 20.119 17.272 15.567 15.084 14.050
SingleCamWriter, diff 46.427 36.563 33.875 33.317 33.355 33.331 33.438
PanoramaWriter, diff 48.629 37.152 33.965 33.320 33.354 33.330 33.320

BGS, ZXY query† 685.404 671.347 660.456 675.240 692.639 639.769 688.503
Camera frame drops/1000 75 26 7 9 6 8 8
Pipeline frame drops/1000 729 327 67 0 6 3 3

Table B.4: CPU core count scalability, without frame drop handling, mean times (ms).
* Not a separate module, but is a part of the total Uploader time usage

† Not a module affecting the real-time constraint of the pipeline. Is executing separately

79

HyperThreading Scalability

Referenced in section 3.9.5

4 cores,
no HT

4 cores,
HT

8 cores,
no HT

8 cores,
HT

16 cores,
no HT

16 cores,
HT

Controller 4.257 4.023 4.044 3.898 3.391 3.717
Reader 32.392 32.885 32.947 33.275 33.278 33.281
Converter 14.041 18.832 13.319 15.170 11.164 12.319
Debarreler 24.840 27.469 16.808 16.903 10.453 12.106
Uploader 33.980 35.157 27.818 26.883 21.809 22.725
Uploader, BGS part* 16.417 18.482 13.405 14.325 11.143 11.834
SingleCamWriter 53.313 40.752 31.290 26.754 20.023 21.173
PanoramaWriter 53.544 35.405 29.613 20.119 16.903 14.050
SingleCamWriter, diff 63.642 46.427 38.845 33.875 33.323 33.438
PanoramaWriter, diff 67.494 48.629 39.831 33.965 33.319 33.320

BGS, ZXY query† 680.114 685.404 708.971 660.456 643.523 688.503
Camera frame drops/1000 223 75 54 7 5 8
Pipeline frame drops/1000 1203 729 477 67 3 3

Table B.5: HyperThreading scalability, without drop handling, mean times (ms).
* Not a separate module, but is a part of the total Uploader time usage

† Not a module affecting the real-time constraint of the pipeline. Is executing separately

CPU Core Count Scalability with Drop Handling

Referenced in section 3.9.6

Module 4 cores 6 cores 8 cores 10 cores 12 cores 14 cores 16 cores
Controller 4.204 3.955 3.694 3.706 3.436 4.094 4.006
Reader 33.037 33.070 33.266 33.290 33.301 33.286 33.277
Converter 10.566 12.614 14.726 13.419 13.544 12.640 12.335
Debarreler 15.015 14.421 15.666 14.458 12.981 12.514 11.891
Uploader 19.857 23.015 26.076 25.008 24.137 23.554 23.487
Uploader, BGS part* 14.859 14.447 14.314 12.913 12.614 12.411 11.644
SingleCamWriter 23.763 23.689 25.607 23.910 21.995 21.792 20.969
PanoramaWriter 20.187 18.908 19.163 17.771 15.286 14.497 13.695
SingleCamWriter, diff 38.070 34.782 33.661 33.352 33.327 33.358 33.324
PanoramaWriter, diff 38.724 35.019 33.715 33.353 33.319 33.366 33.323

BGS, ZXY query† 656.593 679.531 669.598 699.519 641.223 636.265 668.108
Camera frame drops/1000 41 33 7 4 3 4 4
Pipeline frame drops/1000 343 177 37 6 2 7 3

Table B.6: CPU core count scalability, with frame drop handling, mean times (ms).
* Not a separate module, but is a part of the total Uploader time usage

† Not a module affecting the real-time constraint of the pipeline. Is executing separately

80

Compiler Optimization Comparison

Included for completeness, shows timings using different optimization levels in the
GCC compiler.

Module No optimizations O2 O3

Controller 4.006 4.045 3.821
Reader 33.277 33.308 33.302
Converter 12.335 12.162 12.576
Debarreler 11.891 12.162 12.100
Uploader 23.487 17.336 17.377
Uploader, BGS part† 11.644 5.644 5.399
SingleCamWriter 20.969 21.659 21.555
PanoramaWriter 13.695 14.695 14.797
SingleCamWriter, diff 33.324 33.327 33.321
PanoramaWriter, diff 33.323 33.323 33.317

BGS, ZXY query* 668.108 694.356 632.797
Camera frame drops/1000 4 2 3
Pipeline frame drops/1000 3 0 0

Table B.7: Compiler optimization comparison, mean times (ms).
* Not a separate module, but is a part of the total Uploader time usage

† Not a module affecting the real-time constraint of the pipeline. Is executing separately

Appendix C

Accessing the Source Code

The source code for the Bagadus system, including what is described in this thesis, can
be found at https://bitbucket.org/mpg_code/bagadus. To retrieve the code,
run git clone git@bitbucket.org:mpg_code/bagadus.git.

81

82

Bibliography

[1] Interplay sports. http://www.interplay-sports.com/.

[2] Prozone. http://www.prozonesports.com/.

[3] Stats technology. http://www.sportvu.com/football.asp.

[4] Camargus - premium stadium video technology infrastructure. http://www.

camargus.com/.

[5] ZXY Sport Tracking. http://www.zxy.no/.

[6] Simen Sægrov. Bagadus: next generation sport analysis and multimedia platform
using camera array and sensor networks. Master’s thesis, University of Oslo,
2012.

[7] Matthew Brown and David G Lowe. Automatic panoramic image stitching using
invariant features. International Journal of Computer Vision, 74(1):59–73, 2007.

[8] Anat Levin, Assaf Zomet, Shmuel Peleg, and Yair Weiss. Seamless image stitching
in the gradient domain. Computer Vision-ECCV 2004, pages 377–389, 2004.

[9] Jiaya Jia and Chi-Keung Tang. Image stitching using structure deformation. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, 30(4):617–631, 2008.

[10] Alec Mills and Gregory Dudek. Image stitching with dynamic elements. Image
and Vision Computing, 27(10):1593 – 1602, 2009. Special Section: Computer Vision
Methods for Ambient Intelligence.

[11] Yao Li and Lizhuang Ma. A fast and robust image stitching algorithm. In In-
telligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on,
volume 2, pages 9604–9608. IEEE, 2006.

[12] D. E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe Turner, and
Paul R. Young. Computing as a discipline. Commun. ACM, 32(1):9–23, January
1989.

[13] Marius Tennøe, Espen Helgedagsrud, Mikkel Næss, Henrik Kjus Alstad,
Håkon Kvale Stensland, Pål Halvorsen, and Carsten Griwodz. Realtime
panorama video processing using nvidia gpus. GPU Technology Conference,
March 2013.

83

84

[14] Marius Tennøe, Espen Helgedagsrud, Mikkel Næss, Henrik Kjus Alstad,
Håkon Kvale Stensland, Vamsidhar Reddy Gaddam, Carsten Griwodz, Dag Jo-
hansen, and Pål Halvorsen. Efficient implementation and processing of a real-time
panorama video pipeline. Submitted for publication, ACM Multimedia, 2013.

[15] Simen Sægrov, Alexander Eichhorn, Jørgen Emerslund, Håkon Kvale Stensland,
Carsten Griwodz, Dag Johansen, and Pål Halvorsen. Bagadus: An integrated
system for soccer analysis (demo). In Proceedings of the International Conference on
Distributed Smart Cameras (ICDSC), October 2012.

[16] Pål Halvorsen, Simen Sægrov, Asgeir Mortensen, David K. C. Kristensen, Alexan-
der Eichhorn, Magnus Stenhaug, Stian Dahl, Håkon Kvale Stensland, Vamsid-
har Reddy Gaddam, Carsten Griwodz, and Dag Johansen. Bagadus: An inte-
grated system for arena sports analytics - a soccer case study. In Proceedings of the
ACM Multimedia Systems conference (MMSys), February 2013.

[17] Dag Johansen, Magnus Stenhaug, Roger Bruun Asp Hansen, Agnar Christensen,
and Per-Mathias Høgmo. Muithu: Smaller footprint, potentially larger imprint.
In Proceedings of the IEEE International Conference on Digital Information Management
(ICDIM), pages 205–214, August 2012.

[18] swscale homepage. http://ffmpeg.org/libswscale.html.

[19] x264 homepage. http://www.videolan.org/developers/x264.html.

[20] Opencv homepage. http://www.opencv.org/.

[21] F. Albregtsen and G. Skagestein. Digital representasjon: av tekster, tall, former, lyd,
bilder og video. Unipub, 2007.

[22] C.J. van den Branden Lambrecht. Vision Models and Applications to Image and Video
Processing. Springer, 2001.

[23] Openframeworks homepage. http://www.openframeworks.cc/.

[24] Bagadus video demonstration. http://www.youtube.com/watch?v=

1zsgvjQkL1E.

[25] ofxgui homepage. http://ofxaddons.com/repos/42.

[26] Wai-Kwan Tang, Tien-Tsin Wong, and P-A Heng. A system for real-time
panorama generation and display in tele-immersive applications. Multimedia,
IEEE Transactions on, 7(2):280–292, 2005.

[27] Michael Adam, Christoph Jung, Stefan Roth, and Guido Brunnett. Real-time
stereo-image stitching using gpu-based belief propagation. 2009.

[28] Software stitches 5k videos into huge panoramic video walls,
in real time. http://www.sixteen-nine.net/2012/10/22/

software-stitches-5k-videos-huge-panoramic-video-walls-real-time/,
2012. [Online; accessed 05-march-2012].

85

[29] Live ultra-high resolution panoramic video. http://www.

fascinate-project.eu/index.php/tech-section/hi-res-video/.
[Online; accessed 04-march-2012].

[30] Nvidia. CUDA C Best Practices Guide, oct 2012.

[31] Nvidia. CUDA C Programming Guide, oct 2012.

[32] Nvidia. Cuda programming model overview. 2008.

[33] Marius Tennøe. Efficient implementation and processing of a real-time panorama
video pipeline with emphasis on background subtraction. Master’s thesis, Uni-
versity of Oslo, 2013.

[34] Nvidia performance primitives homepage. https://developer.nvidia.

com/npp.

[35] Mikkel Næss. Efficient implementation and processing of a real-time panorama
video pipeline with emphasis on color correction. Master’s thesis, University of
Oslo, 2013.

[36] Videolan project homepage. http://www.videolan.org.

[37] Jason Garrett-Glaser. git.videolan.org git - x264.git blob - doc threads.txt.
git://git.videolan.org/x264.git, 2010.

[38] Dolphin interconnect solutions - pci express interconnect. http://www.

dolphinics.com/.

[39] Opencv gpu module. http://opencv.willowgarage.com/wiki/OpenCV_
GPU.

[40] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

[41] Boost graph library homepage. http://www.boost.org/doc/libs/1_53_

0/libs/graph/doc/index.html.

[42] Lemon homepage. http://lemon.cs.elte.hu/trac/lemon.

[43] Literateprograms dijkstra implementation. http://en.literateprograms.

org/Dijkstra’s_algorithm_(C_Plus_Plus).

