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The importance of winning has increased the role of performance analysis in the sports industry, and this underscores how

statistics and technology keep changing the way sports are played. Thus, this is a growing area of interest, both from a computer

system view to manage the technical challenges and from a sport performance view to aid the development of athletes. In this

respect, Bagadus is a real-time prototype of a sports analytics application using soccer as a case study. Bagadus integrates a

sensor system, a soccer analytics annotations system and a video processing system using a video camera array. A prototype is

currently installed at Alfheim Stadium in Norway, and in this paper, we describe how the system can be used in real-time to

playback events. The system supports both stitched panorama video and camera switching modes, and creates video summaries

based on queries to the sensor system. Moreover, we evaluate the system from a systems point of view, benchmarking di↵erent

approaches, algorithms and trade-o↵s, and show how the system runs in real-time.

Categories and Subject Descriptors: H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems—
Video

General Terms: Experimentation, Measurement, Performance

Additional Key Words and Phrases: Real-time panorama video, system integration, camera array, sensor tracking, video anno-

tation, sport analytics, soccer system

1. INTRODUCTION
Sport analysis has become a large industry, and a large number of (elite) sports clubs study their
game performance spending a large amount of resources. This analysis is performed either manu-
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ally or using one of the many existing analytics tools. In the area of soccer, several systems enable
trainers and coaches to analyze the game play in order to improve the performance. For instance, in
Interplay-sports [Interplay sports 2013], video-streams are manually analyzed and annotated using
a soccer ontology classification scheme. ProZone [Prozone 2013] automates some of the manual anno-
tation process by video-analysis software. In particular, it quantifies player movement patterns and
characteristics like speed, velocity and position of the athletes, and is had been successfully used at
for example Old Trafford in Manchester and Reebook Stadium in Bolton [Salvo et al. 2006]. Similarly,
STATS SportVU Tracking Technology [Stats Technology 2013] uses video cameras to collect the posi-
tioning data of the players within the playing field in real-time. This is further compiled into player
statistics and performance. Camargus [Camargus 2013] provides a very nice video technology infras-
tructure, but lacks other analytics tools. As an alternative to video analysis, which often is inaccurate
and resource hungry, both the Cairo’s VIS.TRACK [Cairos technologies 2013b] and ZXY Sport Track-
ing [ZXY 2013] systems use global positioning and radio based systems for capturing performance
measurements of athletes. Thus, these systems can present player statistics, including speed profiles,
accumulated distances, fatigue, fitness graphs and coverage maps, in many different ways like charts,
3D graphics and animations.

To improve game analytics, video that replays real game events becomes increasingly important.
However, the integration of the player statistics systems and video systems still requires a large
amount of manual labor. For example, events tagged by coaches or other human expert annotators
must be manually extracted from the videos, often requiring hours of work in front of the computer.
Furthermore, connecting the player statistics to the video also requires manual work. One recent ex-
ample is the Muihtu system [Johansen et al. 2012], which integrates coach annotations with related
video sequences, but the video must be manually transferred and mapped to the game timeline.

As the above examples show, there exist several tools for soccer analysis. However, to the best of our
knowledge, there does not exist a system that fully integrates all these features. In this respect, we
have earlier presented [Halvorsen et al. 2013] and demonstrated [Sægrov et al. 2012] a system called
Bagadus. This system integrates a camera array video capture system with the ZXY Sport Tracking
system for player statistics and a system for human expert annotations. Bagadus allows the game
analytics to automatically playback a tagged game event or extract a video of events extracted from
the statistical player data, for example all sprints at a given speed. Using the exact player position
provided by sensors, a trainer can also follow individuals or groups of players, where the videos are
presented either using a stitched panorama view or by switching cameras. Our earlier work [Halvorsen
et al. 2013; Sægrov et al. 2012] demonstrated the integrated concept, but did not have all operations,
like generation of the panorama video, in real-time. In this paper, we present enhancements providing
live, real-time analysis and video playback by using algorithms to enhance the image quality, paral-
lel processing and offloading to co-processing units like GPUs. Our prototype is deployed at Alfheim
Stadium (Tromsø IL, Norway), and we use a dataset captured at a Norwegian premier league game to
demonstrate our system.

The remainder of the paper is structured as follows: Next, in section 2, we give a brief overview of
the basic idea of Bagadus and introduce the main subsystems. Then, we look at the video-, tracking-
and analysis-subsystems in more detail in sections 3, 4 and 5, respectively. Then, we briefly explain
the case study at Alfheim stadium in section 6. Section 7 provides a brief discussion of various aspect
of the system before we conclude the paper in section 8.

2. BAGADUS – THE BASIC IDEA
The interest in sports analysis systems has recently increased a lot, and it is predicted that sports
analytics will be a real game-changer, i.e., “statistics keep changing the way sports are played — and
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0, Publication date: 2013.
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Fig. 1: Overall Bagadus architecture.

changing minds in the industry” [Dizikes 2013]. As described above, several systems exist, some for
a long time already providing game statistics, player movements, video highlights etc. However, to a
large degree, the existing systems are offline systems, and they require a large portion of manual work
to integrate information from various computer systems and expert sport analytics. In this respect,
Bagadus is a prototype that aims to fully integrate existing systems and enable real-time presentation
of sport events. Our system is built in cooperation with the Tromsø IL soccer club and the ZXY sport
tracking company for soccer analysis. A brief overview of the architecture and interaction of the differ-
ent components is given in figure 1. The Bagadus system is divided into three different subsystems,
which are integrated in our soccer analysis application.

The video subsystem consists of multiple small shutter-synchronized cameras that record a high
resolution video of the soccer field. They cover the full field with sufficient overlap to identify common
features necessary for camera calibration and image stitching. Furthermore, the video subsystem sup-
ports two different playback options. The first allows playback of video that switches between streams
delivered from the different cameras, either manually selecting a camera or automatically following
players based on sensor information. The second option plays back a panorama video stitched from the
different camera feeds. The cameras are calibrated in their fixed position, and the captured videos are
each processed and stored using a capture–debarrel–rotate–stitch–encode–store pipeline. In an offline
mode, Bagadus allows a user to zoom in on and mark player(s) in the retrieved video on the fly (see
figure 1), but this is not yet supported in the live mode used during the game.
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To identify and follow players on the field, we use a tracking (sensor) subsystem. In this respect,
tracking people through camera arrays has been an active research topic for several years. The accu-
racy of such systems has improved greatly, but there are still errors. Therefore, for stadium sports, an
interesting approach is to use sensors on players to capture the exact position. In this area, ZXY Sport
Tracking [ZXY 2013] provides such a sensor-based solution that provides player position information.
Bagadus uses this position information to track players, or groups of players, in single camera views,
stitched views or zoomed-in modes.

The third component of Bagadus is an analytics subsystem. Coaches have for a long time analyzed
games in order to improve their own team’s game play and to understand their opponents. Tradition-
ally, this has been done by making notes using pen and paper, either during the game or by watching
hours of video. Some clubs even hire one person per player to describe the player’s performance. To
reduce the manual labor, we have implemented a subsystem that equips members of the trainer team
with a tablet (or even a mobile phone), where they can register predefined events quickly with the press
of a button or provide textual annotations. In Bagadus, the registered events are stored in an analytics
database, and can later be extracted automatically and shown along with a video of the event.

Bagadus implements and integrates many well-known components to support our arena sports ana-
lytics application scenario. The main novelty of our approach is then the combination and integration
of components enabling automatic presentation of video events based on the sensor and analytics data
that are synchronized with the video system. This gives a threefold contribution: 1) a method for spa-
tially mapping the different coordinate systems of location (sensor) data and video images to allow for
seamless integration, 2) a method to record and synchronize the signals temporally to enable semantic
extraction capabilities, and 3) the integration of the entire system into an interactive application that
can be used online and offline.

Thus, in the offline mode, Bagadus will for example be able to automatically present a video clip of
all the situations where a given player runs faster than 10 meters per second or when all the defenders
were located in the opponent’s 18-yard box (penalty box). Furthermore, we can follow single players
and groups of players in the video, and retrieve and playback the events annotated by expert users.
Thus, where people earlier used a huge amount of time for analyzing the game manually, Bagadus is an
integrated system where the required operations and the synchronization with video is automatically
managed. In the online mode, Bagadus receives expert annotated events by the team analytics team
and enable an immediate playback during a game or a practice session.

3. VIDEO SUBSYSTEM
To be able to record high resolution video of the entire soccer field, we have installed a camera array
using small industry cameras which together cover the entire field. The video subsystem then extracts,
process and delivers video events based on given time-intervals, player positions, etc. There are two
versions of the video subsystem. One non-real-time system and one live real-time system. Both the
video subsystems support two different playback modes. The first mode allows the user to play video
from the individual cameras by manually selecting a camera or by automatically following players.
The second mode plays back a panorama video stitched from the 4 camera feeds. The non-real-time
system plays back recorded video stored on disks, and because of the processing times it will not be
available before the match is finished. The live system on the other hand supports playing back video
directly from the cameras and events will be available in real-time.

3.1 Camera setup
To record high resolution video of the entire soccer field, we have installed a camera array consist-
ing of 4 Basler industry cameras with a 1/3-inch image sensor supporting 30 fps and a resolution
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0, Publication date: 2013.
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of 1280⇥960. The cameras are synchronized by an external trigger signal in order to enable a video
stitching process that produces a panorama video picture. For a minimal installation, the cameras are
mounted close to the middle line under the roof covering the spectator area, i.e., approximately 10

Fig. 2: Camera setup at Alfheim stadium.

meters from the side line and 10 meters above the
ground. With a 3.5 mm wide-angle lens, each camera cov-
ers a field-of-view of about 68 degrees, i.e., all four cover
the full field with sufficient overlap to identify common
features necessary for camera calibration and stitching
(see figure 2).

The cameras are managed using our own library,
called Northlight, to manage frame synchronization,
storage, encoding, etc. The system is currently running
on a single computer with an Intel Core i7-3930K @ 3.2
GHz and 16 GB memory. Northlight integrates the SDK
provided by Basler for the cameras, video encoding using
x264 and color-space conversion using FFmpeg.

3.2 Digital zoom
Bagadus supports digital zooming on tracked players where the tracked player kept in the center of
the image while zooming in. An important operation here is interpolation where we use known data
to estimate values at unknown points when we re-size or remap (distort) the image. In this respect,
we have compared four different interpolation algorithms, i.e., nearest neighbor, bilinear, bicubic and
Lanczos interpolation. In image processing, bicubic interpolation is often chosen over bilinear interpo-
lation or nearest neighbor in image re-sampling, when speed is not an issue. Lanczos interpolation has
the advantages of bicubic interpolation and is known to produce sharper results than bicubic interpo-
lation. In Bagadus, our initial tests show that the average interpolation times per frame are 4.2 ms,
7.4 ms, 48.3 ms and 240 ms for Nearest neighbor-, Bilinear-, Bicubic- and Lanczos interpolation, re-
spectively [Halvorsen et al. 2013]. Due to our time constraints, we use Nearest neighbor interpolation.

3.3 Stitching
Tracking game events over multiple cameras is a nice feature, but in many situations, it may be desir-
able to have a complete view of the field. In addition to the camera selection functionality, we therefore
generate a panorama picture by combining images from multiple, trigger-synchronized cameras. The
cameras are calibrated in their fixed position using a classical chessboard pattern [Zhang 1999], and
the stitching operation requires a more complex processing pipeline. We have alternative implementa-
tions with respect to what is stored and processed offline, but in general, we must 1) correct the images
for lens distortion in the outer parts of the frame due to a fish-eye lens; 2) rotate and morph the images
into the panorama perspective due to different positions covering different areas of the field; 3) correct
the image brightness due to light differences; and 4) stitch the video images into a panorama image.
Figure 3 shows the process of using four warped camera images into a single large panorama image.
The highlighted areas in the figure are the regions where the cameras overlap.

After the initial steps, the overlapping areas between the frames are used to stitch the 4 videos
into a panorama picture before storing it to disk. We first tried the open source solutions given by
computer vision library OpenCV which are based on the automatic panoramic image stitcher by Brown
et al. [Brown and Lowe 2007], i.e., we used the auto-stitcher functions using planar-, cylindrical- and
spherical projections. Our analysis shows that neither of the OpenCV implementations are perfect
having large execution times and varying image quality and resolutions [Halvorsen et al. 2013]. The
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Fig. 3: The stitching process. Each image from the 4 different frames are warped and combined into a panorama.

fastest algorithm is the spherical projection, but it has severe barreling effects, and the execution time
is 1746 ms per frame – far above our real-time goal. Therefore, a different approach called homography
stitching [Hartley and Zisserman 2004] has been selected where we use a homography given by the
projective geometry translating ZXY’s coordinate system to pixel coordinates.

3.4 Non-real-time processing loop implementation
As a first proof-of-concept prototype [Halvorsen et al. 2013], we implemented the stitching operation
as a single-threaded sequential processing loop as shown in figure 4(a), i.e., processing one frame per
loop iteration. As seen in the figure, it consists of four main parts. One pre-processing part that reads
video frames from either disk or cameras, converts the video from YUV to RGB which is used by
the rest of the pipeline and debarreling to remove any barrel distortion from the cameras. For this
version of the system, the debarreling functions in OpenCV is used. The next part is the primary
stitching part using the homography based stitching algorithm to stitch the four individual camera
frames into a 7000x960 panorama frame. As we can observe from figure 4(b), this is the most resource
demanding part of the system. After the stitching, the post-processing is responsible for converting the
video back from RGB to YUV due to lacking support for RGB in the x264 video encoder. The single
threaded loop means that all the steps are performed sequentially for one set of frames before the next
set of frames is processed. The performance is presented in figure 4(b), and the total execution time
per panorama frame exceeds 1100 ms in average. In order to meet our 30 fps requirement, our next
approach improves the performance by parallelizing and distributing the operations in a processing
pipeline, and offloading several steps onto a GPU.

3.5 Real-time parallel and distributed processing implementation
The previous sections displayed some severe processing overheads with respect to generating a 30
fps panorama video in real-time. In this section, we address this by implementing the modules in a
parallel pipeline in contrast to the loop described above, and we offload compute-intensive parts of the
pipeline to a modern GPU for as seen in figure 5.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0, Publication date: 2013.



• 0:7

(a) Stitching components in a single-threaded loop. (b) Per frame processing time (in milliseconds).

Fig. 4: The Bagadus single-threaded processing loop stitching implementation.

Fig. 5: The parallel and distributed processing implementation of the stitching pipeline.

3.5.1 Implementation. Figure 5 shows that the parallel pipeline is separated into two main parts.
One part running on the CPU, and the other part running on a GPU. Several of the CPU modules
in the pipeline is the same as in the non-real-time loop. The CamReader, Converter, Debarreler, Sin-
gleCamWriter and PenoramaWriters are based on the same design, but are now running in their own
threads and with an updated version of the x264 encoder. The Controller module is new and is re-
sponsible for initializing the pipeline, synchronizing the different modules, handling global errors and
frame drops and transferring data or data pointers between the different modules. The Controller also
checks the execution speed. If an earlier step in the pipeline runs too slow, and one or more frames
have been lost from the cameras, the controller tells the modules in the pipeline to skip the delayed or
dropped frame, and reuse the previous frame.

A Background subtractor module is running both on the CPU and on the GPU. This module is new
in the pipeline and is responsible for determining which pixels of a video that belongs to the fore-
ground and which pixels that belong to the background. The background subtractor can also get input
from the ZXY sensor system to improve the performance and precision. Even though we have en-
hanced the background subtraction with sensor data input, there are several implementation alterna-
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tives. When determining which algorithm to implement, we evaluated two different alternatives, i.e.,
Zivkovic [Zivkovic 2004; Zivkovic and van der Heijden 2006] and KaewTraKulPong [Kaewtrakulpong
and Bowden 2001]. Both algorithms uses a Gaussian Mixture Model (GMM), are implemented in
OpenCV and have shown promising results other surveys [Brutzer et al. 2011]. In the end, Zivkovic
provided the best accuracy which is important for our scenario and it was therefore selected.

There are also several modules that are running primarily on the GPU. The Uploader and Down-
loader are managing the data flow to and from the GPU. The Uploader transfers RGB frames and the
background subtraction player pixel maps from the CPU to the GPU for further processing. The down-
loader transfers back the stitched video in YUV 4:2:0 format for encoding. Both modules use double
buffering and asynchronous transfers.

The main parts of the panorama creation is performed by the Warper, Color-corrector and Stitcher
modules running on the GPU. The warper module warps (as described above) the camera frames and
the foreground masks from the background subtractor module to fit the common panorama plane.
Here, we used the Nvidia Performance Primitives library (NPP) for an optimized implementation.
The Color-corrector is in this implementation added to the pipeline because it is nearly impossible to
calibrate the cameras to output the exact same colors because of the uncontrolled lighting conditions.
This means that, to generate a best possible panorama video, we correct the colors of all the frames to
remove eventual color disparities. This operation is performed after the images are warped. The reason
for this is that locating the overlapping regions is easier with aligned images, and the overlap is also
needed when stitching the images together. The implementation is based on the algorithm presented
in [Xiong and Pulli 2009], which has been optimized to run in real-time with CUDA.

The stitcher module is similar to the homography stitcher in the loop implementation, where a seam
is created between the overlapping camera frames. Our previous approach uses static cuts for seams,
which means that a fixed rectangular area from each frame is copied directly to the output frame. Static
cut panoramas are very fast, but can introduce graphical errors in the seam area, especially when there
is movement in the scene as illustrated in figure 6(a). Thus, to make a better visual result, a dynamic
cut stitcher is introduced. This module now creates seams by first creating a rectangle of adjustable
width over the static seam area. Then, it treats all pixels within the seam area as graph nodes. Each
of these edges’ weights are calculated by using a custom function that compares the absolute color
difference between the corresponding pixel in each of the two frames we are trying to stitch. The
weight function also checks the foreground masks from the Background subtractor to see if any player
is in the pixel, and if so it adds a large weight to the node. We then run a simplified version of the
Dijkstra graph algorithm (only going up in the image) on the graph to create a minimal cost route from
the bottom of the image to the end at the top. An illustration of how the final seam looks can be seen
in figure 6(b), where the seams without and with color correction are shown in figures 6(c) and 6(d).

3.5.2 Execution time evaluation. To evaluate the processing performance of the parallel and dis-
tributed processing pipeline implementation, we used a single computer with an Intel Server Adapter
i350-T4 for connecting the four cameras with gigabit ethernet, an Intel Core i7-3930K six core proces-
sor with 32GB RAM and a single Nvidia GeForce GTX Titan graphics processor.

The overall performance of the parallel pipeline is shown in figure 7(a). The CPU modules are
marked in blue, and the GPU modules are marked in green. The Uploader and Downloader mod-
ule run both on the CPU and the GPU, but we have chosen to mark them as CPU modules, since they
both are controlled by the CPU.

Images from all four cameras are asynchronously transfered to the GPU as soon as they are avail-
able. The number of threads and blocks on the GPU is automatically adjusted by how many cores
that are available on the GPU. The modules executing on the GPU synchronizes with barriers, when
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0, Publication date: 2013.
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(a) The original fixed cut stitch with a straight vertical seam. (b) The new dynamic stitch with color correction.

(c) Dynamic stitch with no color correction. In the left im-
age, one can see the seam search area between the red lines,
and the seam in yellow. In the right image, one clearly sees
the seam, going outside the player, but there are still color
differences.

(d) Dynamic stitch with color correction. In the left image,
one can see the seam search area between the red lines, and
the seam in yellow. In the right image, one cannot see the
seam, and there are no color differences.

Fig. 6: Stitcher comparison - improving the visual quality with dynamic seams and color correction.

one module finnish, the next will be stared. Data is stored in global memory and pointers to the data
is transfered between the different modules. When processing is finished on the GPU, data is asyn-
chronously transfered back to the CPU for encoding and writing to disk.

We can see that when executing the whole pipeline, all modules perform well below the real-time
threshold. Note that the reader module is limited by the cameras which produce a new frame every
33 ms. Remember that all these modules run in parallel sharing the processing elements. Thus, since
all modules perform better than the 33 ms threshold, we are able to deliver panorama frames in real-
time. This is further demonstrated by measuring the differences between the single camera writes and
the difference between the panorama writes. In figure 7(b), we present the write differences between

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0, Publication date: 2013.



0:10 •

(a) The processing performance of the different pipeline modules.

(b) Pipeline write differences (showing times for 1000 frames). Note that the delayed start
of panorama writes is caused by the frame delay buffer implemented in the uploader mod-
ule.

Fig. 7: The processing performance of the parallel and distributed processing pipeline.

the frames, and we observe that a new frame is output every 33 ms, i.e., equal to the input rate of the
cameras. These results show that our parallel and distributed processing implementation executes in
real-time on a single off-the-shelf computer.

4. TRACKING SUBSYSTEM
Tracking people through camera arrays has been an active research topic for several years, and many
approaches have been suggested (e.g., [Ben Shitrit et al. 2011; Berclaz et al. 2011; Jiang et al.
2007; Xu et al. 2004]). The accuracy of such tracking solutions vary according to scenarios and is
continuously improving, but they are still giving errors, i.e., both missed detections and false posi-
tives [Ben Shitrit et al. 2011]. Often these approaches perform well in controlled lighting conditions
like indoor sport arenas, but the widely varying light conditions in an outdoor stadium provide bigger
challenges.

For stadium sports, an interesting approach is to use sensors on players to capture the exact position.
ZXY Sport Tracking [ZXY 2013] provides such a solution where a sensor system submits position and
orientation information at a maximum accuracy error of about one meter at a frequency of 20 Hz. As
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0, Publication date: 2013.
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indicated in figure 1, the players wear a data-chip with sensors that sends signals to antennas located
around the perimeter of the pitch. The sensor data is then stored in a relational database system.
Based on these sensor data, statistics like total length ran, number of sprints of a given speed, foot
frequency, heart rate, etc. can be queried for, in addition, to the exact position of all players at all times.
Due to the availability of the ZXY system at our case study stadium, Bagadus uses the sensor system
position information to extract videos of for example particular players, and the rest of the system can
be used to extract time intervals of the video (e.g., all time intervals where player X sprints towards
his own goal).

The ZXY sensor belt is worn by all the players on TIL (the home team), it is voluntarily for the
visiting team to use the sensor belts. If they choose to use the belts the will have access to the data
recorded during the match. The belts are small and compact and does not disturb the players during
the match, they are also approved by FIFA for use during international matches.

Although the amount of data generated by the position sensors is small compared to video, a game
of 90 minutes still produces approximately 2.4 million records. Nevertheless, as we show later in sec-
tion 6, we still have reasonable response times from sending the a complex database query until the
video starts to play the corresponding query result events.

4.1 Mapping sensor positions to image pixels
The ZXY system reports the players’ positions on the field using the Cartesian coordinate system. In
order to locate a player in the video, we need a transformation from the sensor coordinates to the image
pixels for all valid pixel coordinates in a video frame. In this respect, we calculate a 3x3 transformation
matrix using fixed, known points on the field as shown in figure 8(a). Then, using the homography
between two planes, each plane can be warped to fit the other as shown in figures 8(c) and 8(d) using
camera 2 as an example. The accuracy of the mapping is fairly good, i.e., only in the outer areas of
the image where debarreling have changed some pixels we see a very small deviation between the
planes. However, if we look at the mapping to the stitched image in figure 8(b), the accuracy is reduced
due to imperfections in the image processing when debarreling and in particular when warping and
rotating. Nevertheless, at the distance between the cameras and the players, the accuracy seems to be
good enough for our purposes (though inaccuracies in the mapping might also contribute to inaccurate
tracking as shown later in figure 15).

In order to have a system where the players are tracked in real-time, the ZXY (x, y) ! pixel(u, v)
mapping using the 3x3 matrix must be fast. A profile of the system when tracking all 22 soccer players
indicate that about 7.2 – 7.7 microseconds are consumed for this operation, i.e., coordinate translation
is hardly noticeable compared to the other components in the system.

4.2 Automatic camera selection
As shown in figure 2, the 4 cameras cover different parts of the field. To follow a player (or group of
players) and be able to automatically generate a video selecting images across multiple cameras, we
also need to map player positions to the view of the cameras. In this respect, we use the same mapping
as described in section 4.1 using our own transformation matrix for each camera. Selecting a camera is
then only a matter of checking if the position of the player is within the boundaries of the image pixels.
When tracking multiple players, we use the same routine and count the number of tracked players
present in each camera and select the camera with the most tracked players.

5. ANALYTICS SUBSYSTEM
To improve a team’s performance and understand their opponents, coaches analyze the game play in
various ways. Traditionally, this has been done by making notes using pen and paper, either during
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(a) Mapping between coordinates in the ZXY plane and the
image plane.

(b) Warping and superimposing the ZXY plane onto the
stitched image (cropped out only parts of the field for read-
ability).

(c) Warping and superimposing the image from camera 2 to
the ZXY plane.

(d) Warping and superimposing the ZXY plane onto the im-
age from camera 2.

Fig. 8: Pixel mapping between the video images and the ZXY tracking system.

the game or by watching hours of video. To reduce the manual labor, we have in close colaboration with
the coach-team developed Muithu, a novel notational analysis system [Johansen et al. 2012] that is
non-invasive for the users, mobile and light-weight. A cellular phone is used by head coaches during
practice or games for annotating important performance events. A coach usually carries a cellular,
even during practice. Thus, to avoid any extra coach device, the cellular is used in the notational
process as notational device. Input is given using the tile-based interface shown in figure 9(b) and 9(c),
and figure 9(a) illustrates use of the system by a coach during a recent game in the Norwegian elite
division. Our experience indicates that this simple drag and drop user-interaction requires in the order
of 3 seconds per notational input. All the events in the app can be custmized by the coaches, and the
number of input notations for a regular 90 minute elite soccer game varies slightly over different
games, but for the 2012 season, the average is in the order of 16 events per game [Johansen et al.
2012].

In order to be usable during a game, the user interface of Muithu has to be easy-to-use and fast. It
is therefore based on managing tiles in a drag-and-drop fashion, and it can be easily configured with
input tiles and hierarchies of tiles. In the case study described in section 6, one preferred configuration
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(a) Event tagging. (b) Select player. (c) Drag to event.

Fig. 9: Operation of the mobile device during a game (a). Select a player (b) and drag the image tile to
the appropriate event type (c) to register an event.

pattern for general practice is to have a two-layer hierarchy, where the root node is a number or all of
the players involved. The next layer is a set of 3-4 training goals associated with each individual player.
By simply touching the picture of a player on a tile, his specific training goals appear on adjacent tiles.
Dragging the face tile over one of these goal tiles is then sufficient for capturing the intended notation.

For heated game purposes a simpler configuration is preferred, typically one tile for offensive and
one for defensive notations (see figure 9(c)). Using this interface as an example, figure 10 depicts the
distribution of such notations during a home game in September 2012.

0:00 0:15 0:30 0:45 1:00 1:15 1:30 1:45

Defensive Offensive

Fig. 10: An example of notations captured during a game (time axis in HH:MM after game start). Observe that offensive nota-
tions are displayed above the time line, defensive notations below.

Recall of performance related events without any observation aids is traditionally problematic in
soccer, but the recall abilities of the head coaches using Muithu has improved rapidly approaching
almost 1 (100%). A small, but fundamental detail is the use of hindsight recording, which implies
that the coach observes an entire situation and determines afterwards whether it was a notable event
worth capturing. By tagging in retrospect, the coach essentially marks the end of a notable event, and
the system finds the start of the sequence by a pre-configured interval length. This simple, yet not so
intuitive approach has reduced the number of false positives, that is, increased precision dramatically.

Only those events tagged by the head coaches are retrieved for movement patterns, strategy, and
tactics evaluation. Key to this process is that the video footage is automatically retrieved from the
video system when the event is selected in the video playout interface. This scales both technically and
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operationally, which enables expedite retrieval. The video sequence interval according to the recorded
event time-stamp is a configuration option easy to change, but operational practice has shown that an
interval around 15 seconds is appropriate for capturing the event on video. It is also possible to adjust
this interval both when the event is created and during playback.

6. ALFHEIM STADIUM CASE STUDY
We have a prototype installation at Alfheim stadium in Tromsø (Norway). The interface of the offline
prototype [Halvorsen et al. 2013]1 is shown in figure 11, where we can follow and zoom in on partic-
ular player(s), and play back expert-annotated events from the game in panorama video and camera
switching mode.

October 2011 University of Oslo 

Linux api 

Camera controls (manual, follow player, stitched) Zoom on tracked player(s) 

Select player(s) to track 
based on  

tracking subsystem 

Select annotated event  
from the  

analytic subsystem  

Fig. 11: The offline Linux interface (tracking three players in camera switching mode).

In the offline mode, the system has support for generating automatic summaries, i.e., selecting mul-
tiple time intervals and playing it out as one video (not yet integrated into the user interface). This
means that the game analytics for example may perform queries against the ZXY database and get the

SELECT timestamp, x_pos, y_pos
FROM zxy_oversample
WHERE (y_pos > 17.5 AND y_pos < 50.5)
AND (x_pos > 0.0 AND x_pos < 16.5)
AND timestamp > 45
AND tag_id = ("the tag_id of player X")

Fig. 12: Example query

corresponding video events. An example could be to
see “all the events where defender X is in the other
team’s 18-yard box in the second half”. In this exam-
ple, the position and corresponding time of player X in
the former example is returned by the pseudo-query
shown in figure 12. Here, the player is located within
the [0.0, 16.5] in the x-coordinate and [17.5, 50.5] on
the y-axis (using the metric system) defining the 18-
yard box. The returned timestamps and positions are

1A video of the (offline) Linux-based system is available at http://www.youtube.com/watch?v=1zsgvjQkL1E. At the time of the
submission, we have not been able to make a video of the online system.
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then used to select video frames (selecting correct camera or the panorama picture) which are automat-
ically presented to the user. Extracting summaries like the example above used to be a time consuming
and cumbersome (manual) process. Bagadus, on the other hand, automates the video generation. For
instance, the response time of returning the resulting video summary from the query above was mea-
sured to be around 671 ms (see table I for more detailed statistics). Note that this was measured on a
local machine, i.e., if the display device is remote, network latency must be added. The SQL queries are
made for expert users. We have also implemented a number of predefined queries that are availible in
the user interface.

Operation Mean Minimum Maximum Standard deviation
Query received 2.7 1.5 5.3 0.38
Query compiled 4.9 2.9 7.8 0.61
First DB row returned 500.4 482.4 532.1 5.91
First video frame displayed 671.2 648.0 794.6 8.82

Table I. : Latency profiling (in ms) of the event extraction operation using ZXY and the video system.

As shown in the online mode HTML5 interface in figure 13, we can in a similar way extract video
events based on expert annotations. Events may be tagged through a web interface or using the mobile
phone sending an HTTP POST command, and all annotated events from the analytics subsystem then
appear in the list of events. Using a standard web-browser, the corresponding videos start by clicking
on the event title. Thus, the integration of subsystems enable event playout during a game or a practice
session.

October 2011 University of Oslo 

webpage  
interface 

Fig. 13: The online HTML5 interface used for expert annotated events. Here the events are sorted by player and then time.
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7. DISCUSSION
Performance analysis of athletes in the sports industry is a growing field of interest. In the context
of computer systems to manage the technical challenges, there are numerous issues that must be
addressed to provide real-time operations. In this respect, our Bagadus soccer analysis application
integrates a sensor system, soccer analytics annotations and video processing of a video camera array.
There exist several components that can be used, and we have investigated several alternatives in our
research. Furthermore, by providing a parallel video-processing pipeline distributing load on multiple
CPUs and GPUs, Bagadus supports analysis operations at 30 fps. Note, however, that our prototype
aims to prove the possible integration at the system level with real-time performance, rather than
being optimized for optimal resource utilization, i.e., there are several areas with potential for further
optimizations.

For example, most stitching processes assume the pinhole camera model where there is no image
distortion because of lenses. In our work, we have observed that a camera can be calibrated to minimize
lens distortion caused by imperfections in a lens, but making a perfect calibration hard. This makes
finding a homography between planes difficult and error-prone, which affects the stitched result.

Another problem we have identified is parallax errors. In this respect, OpenCV’s auto-stitcher has
functionality for selecting seams at places where parallax errors are less obvious. However, when
stitching video recorded from cameras capturing the field from the same position but with different
angles (requiring rotation and warping), parallax errors will become prominent. Such problems arise
because the centers of the projection of different cameras are not well enough aligned. We are look-
ing at solutions to eliminate this problem, one of the most interesting solutions is the arrangement of
cameras over cross such as each camera capture one side of the field similar to [Fehn et al. 2006].

Furthermore, the stitching itself can be moved from a homography based stitching with dynamic
seams to avoid moving objects to more advanced warping techniques like mentioned in [Lin et al.
2011]. A rather intriguing challenge would be to incorporate such a process into Bagadus and perform
this approach in real-time too. Moreover, we have later found several promising alternative algorithms
in the area of video processing (vision), e.g., [Lin et al. 2011; Jin 2008; Li and Du 2010; Ozawa et al.
2012], and there is also scope for further improvement in color correction [Xiong and Pulli 2010], since
the exposure times and other parameters across the cameras may vary.

A major challenge is managing variations in lighting conditions. In most weather conditions, our
current setup works fine, but our main challenge here is a low and bright sun. The visual quality is
exceptional when it is partly or completely cloudy. But the striking difference between the amount of
light available from highlights and shadows during a clear day leaves us with a choice of having a
good dynamic range in only one region. An example from Alfheim stadium is shown in figure 14. When
there are intensely bright and dark areas in the image (figure 14(a)), most cameras have problems
creating a representative image. Particularly, in our Alfheim case study, the location of the stadium
is only 2271 km from the North Pole (69.6489986�N). The sun is significant lower on the sky than
most of the habitable world giving challenges as shown in the figure.In such a case, aiming for a good
quality in highlights leads to loss of details in shadows. Our system currently lacks the ability to make
an appropriate decision which often depends on the events on the field. Professional broadcasters also
experience theses problems, but while they have peoples manning cameras (and thus also the exposure
settings) as well as a someone controlling the live broadcast who also can perform manual adjustments
(figures 14(c) and 14(b)).

Our system needs to handle this without human interaction and in real-time. The problem is related
to sub optimal auto exposure and insufficient dynamic range on the camera sensors. Improvements can
be achieved several ways. In this respect, one could solve common auto exposure problems as proposed
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in [Kao et al. 2011] and use real-time assembling of high-dynamic-range (HDR) video by using low-
dynamic-range images [Ali and Mann 2012; Guthier et al. 2012]. Investigations of such approaches
are currently ongoing.

(a) Bagadus. (b) Broadcaster 1. (c) Broadcaster 2.

Fig. 14: Lighting challenges at Alfheim stadium. Comparison between Bagadus and two professional
Norwegian broadcasters. (NOTE: the images are from the same game but different situations during
the game)

The GPU implementation has been tested on an Nvidia GeForce Titan (GK110) GPU with compute
3.5 capabilities and has been profiled with Nvidia’s Visual Profiler to investigate the possibilities of
scaling the pipeline to more cameras with higher resolution. Currently, we are only using a small
portion of the available PCI Express bandwidth between the CPU and the GPU. Our uploader uses
737 MB/sec and our downloader uses 291 MB/sec. The theoretical bidirectional bandwidth of a 16-lane
PCI Express 3.0 link is 16 GB/sec. The real-time pipeline uses 7 kernels running concurrently on the
GPU. These 7 kernels have an average compute utilization of 14.8% on this GPU. The individual CUDA
kernels are also not optimized for the architecture used in our benchmarks, since the priority was to
get the entire pipeline in real-time. There is therefore a lot of potential on the GPU for scaling the
pipeline to a larger number of cameras with higher resolution.

In our case study, we have analyzed data and retrieving video from only one game. However, we have
earlier shown how one could search for events and on-the-fly generate video summaries in terms of a
video playlist [Johansen et al. 2009] over large libraries of video content. In the used test scenario,
there are events identified from multiple sub-components, e.g., the sensor system and the annotation
system. In many cases, it would be valuable to be able to search across all the metadata, and also across
games. This is a feature we are currently adding, i.e., the underlying video system fully supports the
video extraction, but the interface has not yet been implemented.

The design of Bagadus having three tightly integrated, but still separate subsystems, enables easy
subsystem replacement. For example, we have used ZXY to track players, giving some extra nice fea-
tures (heart rate, impact, etc.). However, tracking players (or generally objects) through video analysis
is a popular research area, e.g., both in sports [Fehn et al. 2006; Yongduek et al. 1997; Iwase and Saito
2004; Kang et al. 2003] and surveillance [Fuentes and Velastin 2006; Chen et al. 2011; Siebel and
Maybank 2002]. Thus, the Bagadus-idea should easily be transferable to arenas where the sensor sys-
tem is unavailable or to other arena sports, like ice hockey, handball, baseball, tennis, American foot-
ball, rugby, etc. Similarly, video processing components can easily be replaced to match other codec’s,
other filters or to suit other end-devices and platforms. Equally, the annotation system can be replaced
(or expanded) to retrieve metadata of events from other sources, like on-the-fly live text commentaries
found in newspapers and online TV stations like we did in our DAVVI system [Johansen et al. 2009].
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One engineering challenge in systems like Bagadus is time synchronization at several levels. First,
to be able to stitch several images to a panorama image, the shutters must be synchronized at sub-
millisecond level, i.e., as the players are moving fast across cameras, imperfect synchronization would
lead to massive pixel offsets across camera perspectives resulting in severely blurred composite images
of players. This is currently solved using an external trigger box (embedded trigger controller based on
an ATMega16 micro-controller) which sends an input signal to the camera’s electronic shutter. Another
observed challenge in this respect is that the clock in the trigger box drifts slightly compared to our
computer clocks depending on temperature (which changes a lot under the harsh outdoor conditions
in northern Norway). While the shutters across cameras remains in sync, a drifting clock leads to
slight variations in frame rate of the captured video. Similarly, Bagadus integrates several subsystems
running on different systems. In this respect, the clock in the ZXY system also slightly drifts compared
to the clock in our video capture machines (will be potentially solved when we switch ZXY to the same
NTP server). So far, these small errors have been identified, but since we alleviate the problem in our
video player by fetching a couple of seconds more video data around a requested event timestamp,
the effects have been small. Another more visible (still very infrequent) effect of time skew is that the
box-marker marking the players(s) in the video gives small misplacement errors as shown in figure 15.
However, the bounding box is slightly larger compared to the person-object itself. This means that the
player is usually contained in the box, even though not exactly in the middle. At the current stage of
our prototype, we have not solved all the synchronization aspects, but it is subject to ongoing work.

Fig. 15: An example of when the tracking
box fails to capture the tracked player. Even
though our analysis of the system indicate
very infrequent errors, it may be various rea-
sons for failed tracking, e.g., both clock skew,
sensor system accuracy and coordinate map-
ping.

The ZXY’s tracking system installed at Alfheim sta-
dium has a maximum accuracy error of one meter
(their new system reduces this error down to a max-
imum of 10 centimeters). This means that if a player
is at a given position, the measured coordinate on the
field could be ± one meter. This could give effects like
shown in figure 15, but for the practical purposes of
our case study, it has no influence on the results.

The players are as described tracked using the ZXY
Sport Tracking system. Another issue which is not
yet included in Bagadus is ball tracking, i.e., a fea-
ture that will potentially improve the analysis fur-
ther. Even though ball tracking is not officially ap-
proved by the international soccer associations due to
the limited reliability and failure to provide a 100%
accuracy, there exist several approaches. For exam-
ple, Adidas and Cairos Technologies have earlier tried
to put sensors inside the ball, i.e., using a magnetic
field to provide pinpoint accuracy of the ball’s loca-
tion inside the field [McKeegan 2007; Cairos technolo-
gies 2013a]. Other approaches include using multi-
ple cameras to track the ball. Hawk-Eye [Hawk-Eye
2013] is one example which tries to visually track the
trajectory of the ball and display a record of its most
statistically likely path as a moving image. Nevertheless, ball tracking in Bagadus is a future feature
to be included.

This paper presents Bagadus in the context of sports analysis for a limited user group within a team.
However, the applicability we conjecture is outside the trainer and athlete sphere, since we have a

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0, Publication date: 2013.



• 0:19

potential platform for next generation personalized edutainment. We consider use case scenarios where
users can subscribe to specific players, events and physical proximities in real-time. For instance, when
the main activity is around the opponent goal, a specific target player can be zoomed into. Combine
this with commonplace social networking services, and we might have a compelling next generation
social networking experience in real-time.

8. CONCLUSIONS
We have presented a real-time prototype of a sports analysis system called Bagadus targeting auto-
matic processing and retrieval of events in a sports arena. Using soccer as a case study, we described
how Bagadus integrates a sensor system, a soccer analytics annotations system and a camera ar-
ray video processing system. Then, we showed how the system removes the large amount of manual
labor traditionally required by such systems. We have described the different subsystems and the
possible trade-offs in order to run the system in real-time mode. Compared to our initial demonstra-
tor [Halvorsen et al. 2013], the improved processing pipeline parallelizing the operational steps and
distributing workload to both CPUs and GPUs enables real-time operations, and the picture qual-
ity has been improved using dynamic seams and color correction. Furthermore, we have presented
functional results using a prototype installation at Alfheim Stadium in Norway. Bagadus enable a
user to follow and zoom in on particular player(s), playback events from the games using the stitched
panorama video and/or the camera switching mode and create video summaries based on queries to
the sensor system.

Finally, there are still several areas for future improvements, e.g., in the areas of image quality im-
provements handling a wide range of lighting conditions, performance enhancements as our profiling
results show that we can optimize the resource utilization further and subjective user evaluations. All
these areas are subjects for ongoing work, e.g., we are testing algorithms discussed in section 7 for
improving the image quality, we are evaluating higher resolution cameras like the 2K Basler aca2000-
50gc, and we are further optimizing and distributing algorithms onto multiple cores and offloading
calculations to GPUs for speed improvements and better utilization of both cores and buses.
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